--- base_model: BAAI/bge-small-en-v1.5 library_name: transformers.js --- https://huggingface.co/BAAI/bge-small-en-v1.5 with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` You can then use the model to compute embeddings, as follows: ```js import { pipeline } from '@xenova/transformers'; // Create a feature-extraction pipeline const extractor = await pipeline('feature-extraction', 'Xenova/bge-small-en-v1.5'); // Compute sentence embeddings const texts = ['Hello world.', 'Example sentence.']; const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); console.log(embeddings); // Tensor { // dims: [ 2, 384 ], // type: 'float32', // data: Float32Array(768) [ -0.04314826801419258, -0.029488801956176758, ... ], // size: 768 // } console.log(embeddings.tolist()); // Convert embeddings to a JavaScript list // [ // [ -0.04314826801419258, -0.029488801956176758, 0.027080481871962547, ... ], // [ -0.03605496883392334, 0.01643390767276287, 0.008982205763459206, ... ] // ] ``` You can also use the model for retrieval. For example: ```js import { pipeline, cos_sim } from '@xenova/transformers'; // Create a feature-extraction pipeline const extractor = await pipeline('feature-extraction', 'Xenova/bge-small-en-v1.5'); // List of documents you want to embed const texts = [ 'Hello world.', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.', 'I love pandas so much!', ]; // Compute sentence embeddings const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); // Prepend recommended query instruction for retrieval. const query_prefix = 'Represent this sentence for searching relevant passages: ' const query = query_prefix + 'What is a panda?'; const query_embeddings = await extractor(query, { pooling: 'mean', normalize: true }); // Sort by cosine similarity score const scores = embeddings.tolist().map( (embedding, i) => ({ id: i, score: cos_sim(query_embeddings.data, embedding), text: texts[i], }) ).sort((a, b) => b.score - a.score); console.log(scores); // [ // { id: 1, score: 0.7995888037433755, text: 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.' }, // { id: 2, score: 0.6911046766159414, text: 'I love pandas so much!' }, // { id: 0, score: 0.39066192695524765, text: 'Hello world.' } // ] ``` Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).