--- base_model: CIDAS/clipseg-rd64-refined library_name: transformers.js tags: - vision - image-segmentation --- https://huggingface.co/CIDAS/clipseg-rd64-refined with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform zero-shot image segmentation with a `CLIPSegForImageSegmentation` model. ```js import { AutoTokenizer, AutoProcessor, CLIPSegForImageSegmentation, RawImage } from '@xenova/transformers'; // Load tokenizer, processor, and model const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clipseg-rd64-refined'); const processor = await AutoProcessor.from_pretrained('Xenova/clipseg-rd64-refined'); const model = await CLIPSegForImageSegmentation.from_pretrained('Xenova/clipseg-rd64-refined'); // Run tokenization const texts = ['a glass', 'something to fill', 'wood', 'a jar']; const text_inputs = tokenizer(texts, { padding: true, truncation: true }); // Read image and run processor const image = await RawImage.read('https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true'); const image_inputs = await processor(image); // Run model with both text and pixel inputs const { logits } = await model({ ...text_inputs, ...image_inputs }); // logits: Tensor { // dims: [4, 352, 352], // type: 'float32', // data: Float32Array(495616)[ ... ], // size: 495616 // } ``` You can visualize the predictions as follows: ```js // Visualize images const preds = logits .unsqueeze_(1) .sigmoid_() .mul_(255) .round_() .to('uint8'); for (let i = 0; i < preds.dims[0]; ++i) { const img = RawImage.fromTensor(preds[i]); img.save(`prediction_${i}.png`); } ``` | Original | `"a glass"` | `"something to fill"` | `"wood"` | `"a jar"` | |--------|--------|--------|--------|--------| | ![image](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/B4wAIseP3SokRd7Flu1Y9.png) | ![prediction_0](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/s3WBtlA9CyZmm9F5lrOG3.png) | ![prediction_1](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/v4_3JqhAZSfOg60v5x1C2.png) | ![prediction_2](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/MjZLENI9RMaMCGyk6G6V1.png) | ![prediction_3](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/dIHO76NAPTMt9-677yNkg.png) | --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).