File size: 1,284 Bytes
57cbf0d ad8da8c 57cbf0d d5cac89 57cbf0d d5cac89 ad8da8c d5cac89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
---
pipeline_tag: image-to-image
tags:
- HiT-SR
- image super-resolution
- transformer
- efficient transformer
---
<h1>
HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution
</h1>
<h3><a href="https://github.com/XiangZ-0/HiT-SR">[Github]</a> | <a href="https://1drv.ms/b/c/de821e161e64ce08/EVsrOr1-PFFMsXxiRHEmKeoBSH6DPkTuN2GRmEYsl9bvDQ?e=f9wGUO">[Paper]</a> | <a href="https://1drv.ms/b/c/de821e161e64ce08/EYmRy-QOjPdFsMRT_ElKQqABYzoIIfDtkt9hofZ5YY_GjQ?e=2Iapqf">[Supp]</a> | <a href="https://www.youtube.com/watch?v=9rO0pjmmjZg">[Video]</a> | <a href="https://1drv.ms/f/c/de821e161e64ce08/EuE6xW-sN-hFgkIa6J-Y8gkB9b4vDQZQ01r1ZP1lmzM0vQ?e=aIRfCQ">[Visual Results]</a> </h3>
<div></div>
HiT-SR is a general strategy to improve transformer-based SR methods. We apply our HiT-SR approach to improve [SwinIR-Light](https://github.com/JingyunLiang/SwinIR), [SwinIR-NG](https://github.com/rami0205/NGramSwin) and [SRFormer-Light](https://github.com/HVision-NKU/SRFormer), corresponding to our HiT-SIR, HiT-SNG, and HiT-SRF. Compared with the original structure, our improved models achieve better SR performance while reducing computational burdens.
Paper: https://huggingface.co/papers/2407.05878
🤗 Please refer to https://huggingface.co/XiangZ/hit-sr for usage.
|