Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,47 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
# Model Card for Model ID
|
6 |
+
|
7 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
8 |
+
|
9 |
+
This model is optimized for plant science by continuing pertaining on over 1.5 million plant science academic articles based on LLaMa-2-7b-base. And it undergoes further instruction tuning to make it follow instructions.
|
10 |
+
|
11 |
+
|
12 |
+
- **Developed by:** [UCSB]
|
13 |
+
- **Language(s) (NLP):** [More Information Needed]
|
14 |
+
- **License:** [More Information Needed]
|
15 |
+
- **Finetuned from model [optional]:** [LLaMa-2]
|
16 |
+
|
17 |
+
- **Paper [optional]:** [https://arxiv.org/pdf/2401.01600.pdf]
|
18 |
+
- **Demo [optional]:** [More Information Needed]
|
19 |
+
|
20 |
+
## How to Get Started with the Model
|
21 |
+
```python
|
22 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
23 |
+
import torch
|
24 |
+
|
25 |
+
tokenizer = LlamaTokenizer.from_pretrained("Xianjun/PLLaMa-7b-instruct")
|
26 |
+
model = LlamaForCausalLM.from_pretrained("Xianjun/PLLaMa-7b-instruct").half().to("cuda")
|
27 |
+
|
28 |
+
instruction = "How to ..."
|
29 |
+
batch = tokenizer(instruction, return_tensors="pt", add_special_tokens=False).to("cuda")
|
30 |
+
with torch.no_grad():
|
31 |
+
output = model.generate(**batch, max_new_tokens=512, temperature=0.7, do_sample=True)
|
32 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
33 |
+
```
|
34 |
+
|
35 |
+
## Citation
|
36 |
+
If you find PLLaMa useful in your research, please cite the following paper:
|
37 |
+
|
38 |
+
```latex
|
39 |
+
@inproceedings{Yang2024PLLaMaAO,
|
40 |
+
title={PLLaMa: An Open-source Large Language Model for Plant Science},
|
41 |
+
author={Xianjun Yang and Junfeng Gao and Wenxin Xue and Erik Alexandersson},
|
42 |
+
year={2024},
|
43 |
+
url={https://api.semanticscholar.org/CorpusID:266741610}
|
44 |
+
}
|
45 |
+
```
|
46 |
+
|
47 |
+
|