File size: 5,348 Bytes
bbc8882 ff521ac bbc8882 b499a35 c331e0f b499a35 ff521ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: llama2
model-index:
- name: XwinCoder-34B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 51.02
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.02
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.53
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.82
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
name: Open LLM Leaderboard
---
# XwinCoder
We are glad to introduce our instruction finetuned code generation models based on CodeLLaMA: XwinCoder. We release model weights and evaluation code.
**Repository:** [https://github.com/Xwin-LM/Xwin-LM/tree/main/Xwin-Coder](https://github.com/Xwin-LM/Xwin-LM/tree/main/Xwin-Coder)
**Models:**
| Model | 🤗hf link | HumanEval pass@1 | MBPP pass@1 | APPS-intro pass@5 |
|-------|------------|----------|------|-------------|
| XwinCoder-7B | [link](https://huggingface.co/Xwin-LM/XwinCoder-7B) | 63.8 | 57.4 | 31.5 |
| XwinCoder-13B | [link](https://huggingface.co/Xwin-LM/XwinCoder-13B) | 68.8 | 60.1 | 35.4 |
| XwinCoder-34B | [link](https://huggingface.co/Xwin-LM/XwinCoder-34B) | 74.2 | 64.8 | 43.0 |
## Updates
- 💥 We released [**XwinCoder-7B**](https://huggingface.co/Xwin-LM/XwinCoder-7B), [**XwinCoder-13B**](https://huggingface.co/Xwin-LM/XwinCoder-13B), [**XwinCoder-34B**](https://huggingface.co/Xwin-LM/XwinCoder-34B). Our XwinCoder-34B reached 74.2 on HumanEval and it **achieves comparable performance as GPT-3.5-turbo on 6 benchmarks**.
- We support evaluating instruction finetuned models on HumanEval, MBPP, APPS, DS1000 and MT-Bench. See our github repository.
## Overview
![Chat demo](rader.png)
* To fully demonstrate our model's coding capabilities in real-world usage scenarios, we have conducted thorough evaluations on several existing mainstream coding capability leaderboards (rather than only on the currently most popular HumanEval).
* As shown in the radar chart results, our 34B model **achieves comparable performance as GPT-3.5-turbo on coding abilities**.
* It is worth mentioning that, to ensure accurate visualization, our radar chart has not been scaled (only translated; MT-Bench score is scaled by 10x to be more comparable with other benchmarks).
* Multiple-E-avg6 refer to the 6 languages used in CodeLLaMA paper. Results of GPT-4 and GPT-3.5-turbo are conducted by us, more details will be released later.
## Demo
We provide a chat demo in our github repository, here are some examples:
![Chat demo](exm.gif)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xwin-LM__XwinCoder-34B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |54.35|
|AI2 Reasoning Challenge (25-Shot)|51.02|
|HellaSwag (10-Shot) |74.02|
|MMLU (5-Shot) |49.53|
|TruthfulQA (0-shot) |43.82|
|Winogrande (5-shot) |68.35|
|GSM8k (5-shot) |39.35|
|