File size: 5,348 Bytes
bbc8882
 
ff521ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc8882
b499a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c331e0f
b499a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff521ac
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
license: llama2
model-index:
- name: XwinCoder-34B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 51.02
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 74.02
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 43.82
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 68.35
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 39.35
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B
      name: Open LLM Leaderboard
---
# XwinCoder

We are glad to introduce our instruction finetuned code generation models based on CodeLLaMA: XwinCoder. We release model weights and evaluation code.

**Repository:** [https://github.com/Xwin-LM/Xwin-LM/tree/main/Xwin-Coder](https://github.com/Xwin-LM/Xwin-LM/tree/main/Xwin-Coder)

**Models:**
| Model | 🤗hf link | HumanEval pass@1 | MBPP pass@1 | APPS-intro pass@5 |
|-------|------------|----------|------|-------------|
| XwinCoder-7B | [link](https://huggingface.co/Xwin-LM/XwinCoder-7B) | 63.8 | 57.4 | 31.5 |
| XwinCoder-13B | [link](https://huggingface.co/Xwin-LM/XwinCoder-13B) | 68.8 | 60.1 | 35.4 |
| XwinCoder-34B | [link](https://huggingface.co/Xwin-LM/XwinCoder-34B) | 74.2 | 64.8 | 43.0 |

## Updates
- 💥 We released  [**XwinCoder-7B**](https://huggingface.co/Xwin-LM/XwinCoder-7B), [**XwinCoder-13B**](https://huggingface.co/Xwin-LM/XwinCoder-13B), [**XwinCoder-34B**](https://huggingface.co/Xwin-LM/XwinCoder-34B). Our XwinCoder-34B reached 74.2 on HumanEval and it **achieves comparable performance as GPT-3.5-turbo on 6 benchmarks**.

- We support evaluating instruction finetuned models on HumanEval, MBPP, APPS, DS1000 and MT-Bench. See our github repository.

## Overview

![Chat demo](rader.png)

* To fully demonstrate our model's coding capabilities in real-world usage scenarios, we have conducted thorough evaluations on several existing mainstream coding capability leaderboards (rather than only on the currently most popular HumanEval). 
* As shown in the radar chart results, our 34B model **achieves comparable performance as GPT-3.5-turbo on coding abilities**. 
* It is worth mentioning that, to ensure accurate visualization, our radar chart has not been scaled (only translated; MT-Bench score is scaled by 10x to be more comparable with other benchmarks).
* Multiple-E-avg6 refer to the 6 languages used in CodeLLaMA paper. Results of GPT-4 and GPT-3.5-turbo are conducted by us, more details will be released later.

## Demo
We provide a chat demo in our github repository, here are some examples:
![Chat demo](exm.gif)




# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xwin-LM__XwinCoder-34B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |54.35|
|AI2 Reasoning Challenge (25-Shot)|51.02|
|HellaSwag (10-Shot)              |74.02|
|MMLU (5-Shot)                    |49.53|
|TruthfulQA (0-shot)              |43.82|
|Winogrande (5-shot)              |68.35|
|GSM8k (5-shot)                   |39.35|