--- license: llama2 model-index: - name: XwinCoder-34B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 51.02 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 74.02 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 49.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 43.82 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 68.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 39.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xwin-LM/XwinCoder-34B name: Open LLM Leaderboard --- # XwinCoder We are glad to introduce our instruction finetuned code generation models based on CodeLLaMA: XwinCoder. We release model weights and evaluation code. **Repository:** [https://github.com/Xwin-LM/Xwin-LM/tree/main/Xwin-Coder](https://github.com/Xwin-LM/Xwin-LM/tree/main/Xwin-Coder) **Models:** | Model | 🤗hf link | HumanEval pass@1 | MBPP pass@1 | APPS-intro pass@5 | |-------|------------|----------|------|-------------| | XwinCoder-7B | [link](https://huggingface.co/Xwin-LM/XwinCoder-7B) | 63.8 | 57.4 | 31.5 | | XwinCoder-13B | [link](https://huggingface.co/Xwin-LM/XwinCoder-13B) | 68.8 | 60.1 | 35.4 | | XwinCoder-34B | [link](https://huggingface.co/Xwin-LM/XwinCoder-34B) | 74.2 | 64.8 | 43.0 | ## Updates - 💥 We released [**XwinCoder-7B**](https://huggingface.co/Xwin-LM/XwinCoder-7B), [**XwinCoder-13B**](https://huggingface.co/Xwin-LM/XwinCoder-13B), [**XwinCoder-34B**](https://huggingface.co/Xwin-LM/XwinCoder-34B). Our XwinCoder-34B reached 74.2 on HumanEval and it **achieves comparable performance as GPT-3.5-turbo on 6 benchmarks**. - We support evaluating instruction finetuned models on HumanEval, MBPP, APPS, DS1000 and MT-Bench. See our github repository. ## Overview ![Chat demo](rader.png) * To fully demonstrate our model's coding capabilities in real-world usage scenarios, we have conducted thorough evaluations on several existing mainstream coding capability leaderboards (rather than only on the currently most popular HumanEval). * As shown in the radar chart results, our 34B model **achieves comparable performance as GPT-3.5-turbo on coding abilities**. * It is worth mentioning that, to ensure accurate visualization, our radar chart has not been scaled (only translated; MT-Bench score is scaled by 10x to be more comparable with other benchmarks). * Multiple-E-avg6 refer to the 6 languages used in CodeLLaMA paper. Results of GPT-4 and GPT-3.5-turbo are conducted by us, more details will be released later. ## Demo We provide a chat demo in our github repository, here are some examples: ![Chat demo](exm.gif) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xwin-LM__XwinCoder-34B) | Metric |Value| |---------------------------------|----:| |Avg. |54.35| |AI2 Reasoning Challenge (25-Shot)|51.02| |HellaSwag (10-Shot) |74.02| |MMLU (5-Shot) |49.53| |TruthfulQA (0-shot) |43.82| |Winogrande (5-shot) |68.35| |GSM8k (5-shot) |39.35|