File size: 8,443 Bytes
f20d980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# import sys
# import torch
# sys.path.append("..")
# import os
# from datasets import load_dataset
# from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
# from utils_llama import PERTURBATIONS, BABYLM_SPLITS, BABYLM_DATA_PATH, \
# GENRES, MARKER_TOKEN_IDS, marker_sg_token, marker_pl_token, marker_rev_token, write_file
# import argparse
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# # import wandb
# # Setup for Weights & Biases
# # wandb.init(project="kallini", group="babylm-perturbation-experiments", name=run_id)
# if __name__ == "__main__":
# # === CONFIGURATION SETTINGS ===
# parser = argparse.ArgumentParser(description="Training configuration.")
# parser.add_argument('--perturbation', type=str, default='hop_tokens4', help='Type of perturbation to use.')
# parser.add_argument('--train_set', type=str, default='10M', help='Dataset size for training.')
# parser.add_argument('--batch_size', type=int, default=4, help='Batch size for training.')
# parser.add_argument('--epoch', type=int, default=20, help='train epoch')
# parser.add_argument('--seed', type=int, default=0, help='Random seed.')
# args = parser.parse_args()
# # no_pos_encodings_underscore = "" # Ex: "_nopos" if needed
# ckpt_path = "./checkpoints"
# # effective_bsz = 512
# model_name = "meta-llama/Llama-3.2-3B"
# model_save_name = "Llama-3.2-3B"
# # === FILE PATHS BASED ON CONFIGURATION ===
# run_id = f"babylm_{args.perturbation}_{args.train_set}_seed{args.seed}"
# cache_dir = os.path.join(ckpt_path, f"{model_save_name}", run_id, "artifacts")
# run_dir = os.path.join(ckpt_path, f"{model_save_name}", run_id, "runs")
# os.makedirs(cache_dir, exist_ok=True)
# os.makedirs(run_dir, exist_ok=True)
# # === DATASET LOADING ===
# dataset_name = f"babylm_{args.perturbation}_{args.train_set}_seed{args.seed}"
# # dataset = load_dataset('babylm_dataset_test.py', name=dataset_name, trust_remote_code=True)
# dataset = load_dataset('babylm_dataset_test.py', name=dataset_name, trust_remote_code=True)
# train_dataset = dataset['train']
# val_dataset = dataset['validation']
# print(train_dataset)
# # === TOKENIZER & MODEL LOADING ===
# # model_name = f"gpt2{'' if no_pos_encodings_underscore == '' else '-no-pos'}-small-{perturbation}-{paren_model}"
# # tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
# tokenizer = PERTURBATIONS[args.perturbation]['llama_tokenizer']
# model = AutoModelForCausalLM.from_pretrained(model_name,
# # device_map="auto", # deepspeed needs to delete this setting
# cache_dir=cache_dir)
# # print("model:", model)
# # === TOKENIZATION ===
# def tokenize_function(examples):
# return tokenizer(examples['text'], padding="max_length", truncation=True, max_length=1024)
# tokenized_train = train_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
# tokenized_valid = val_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
# # === DATA COLLATOR ===
# data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
# # === TRAINING ARGUMENTS ===
# training_args = TrainingArguments(
# output_dir=run_dir,
# evaluation_strategy="steps",
# eval_steps=10,
# per_device_train_batch_size=args.batch_size, # set "auto" in deepspeed config, adjust it in trainer
# logging_dir='./logs',
# logging_steps=10,
# save_steps=200000000,
# learning_rate=5e-5, # align with deepspeed
# num_train_epochs=args.epoch,
# seed=args.seed,
# gradient_accumulation_steps=4, # # set "auto" in deepspeed config, adjust it in trainer
# fp16 = True, # align with deepspeed
# report_to="none",
# deepspeed="deepspeed_config/train_dp_config.json"
# )
# # === TRAINER ===
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=tokenized_train,
# eval_dataset=tokenized_valid,
# tokenizer=tokenizer,
# data_collator=data_collator
# )
# # === TRAIN MODEL ===
# trainer.train()
# # End logging
# # wandb.finish()
import sys
import torch
sys.path.append("..")
import os
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from utils_llama import PERTURBATIONS, BABYLM_SPLITS, BABYLM_DATA_PATH, \
GENRES, MARKER_TOKEN_IDS, marker_sg_token, marker_pl_token, marker_rev_token, write_file
import argparse
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Setup for Weights & Biases
# wandb.init(project="kallini", group="babylm-perturbation-experiments", name=run_id)
if __name__ == "__main__":
# === CONFIGURATION SETTINGS ===
parser = argparse.ArgumentParser(description="Training configuration.")
parser.add_argument('--perturbation', type=str, default='hop_tokens4', help='Type of perturbation to use.')
parser.add_argument('--train_set', type=str, default='10M', help='Dataset size for training.')
parser.add_argument('--batch_size', type=int, default=4, help='Batch size for training.')
parser.add_argument('--epoch', type=int, default=20, help='train epoch')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
args = parser.parse_args()
# no_pos_encodings_underscore = "" # Ex: "_nopos" if needed
ckpt_path = "./checkpoints"
# effective_bsz = 512
model_name = "meta-llama/Llama-3.2-3B"
model_save_name = "Llama-3.2-3B"
# === FILE PATHS BASED ON CONFIGURATION ===
run_id = f"babylm_{args.perturbation}_{args.train_set}_seed{args.seed}"
cache_dir = os.path.join(ckpt_path, f"{model_save_name}", run_id, "artifacts")
run_dir = os.path.join(ckpt_path, f"{model_save_name}", run_id, "runs")
os.makedirs(cache_dir, exist_ok=True)
os.makedirs(run_dir, exist_ok=True)
# === DATASET LOADING ===
dataset_name = f"babylm_{args.perturbation}_{args.train_set}_seed{args.seed}"
# dataset = load_dataset('babylm_dataset_llama.py', name=dataset_name)
dataset = load_dataset('babylm_dataset_llama.py', name=dataset_name, trust_remote_code=True)
train_dataset = dataset['train']
# === TOKENIZER & MODEL LOADING ===
# model_name = f"gpt2{'' if no_pos_encodings_underscore == '' else '-no-pos'}-small-{perturbation}-{paren_model}"
# tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
tokenizer = PERTURBATIONS[args.perturbation]['llama_tokenizer']
model = AutoModelForCausalLM.from_pretrained(model_name,
# device_map="auto", # deepspeed needs to delete this setting
cache_dir=cache_dir)
# print("model:", model)
# === TOKENIZATION ===
def tokenize_function(examples):
return tokenizer(examples['text'], padding="max_length", truncation=True, max_length=1024)
tokenized_train = train_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
# === DATA COLLATOR ===
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
# === TRAINING ARGUMENTS ===
training_args = TrainingArguments(
output_dir=run_dir,
evaluation_strategy="no",
per_device_train_batch_size=args.batch_size, # set "auto" in deepspeed config, adjust it in trainer
logging_dir='./logs',
logging_steps=150,
save_steps=10000,
learning_rate=5e-5, # align with deepspeed
num_train_epochs=args.epoch,
seed=args.seed,
gradient_accumulation_steps=4, # # set "auto" in deepspeed config, adjust it in trainer
fp16 = True, # align with deepspeed
report_to="none",
deepspeed="deepspeed_config/train_dp_config.json"
)
# === TRAINER ===
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
tokenizer=tokenizer,
data_collator=data_collator
)
# === TRAIN MODEL ===
trainer.train()
# End logging
# wandb.finish()
|