File size: 3,252 Bytes
f20d980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import sys
sys.path.append("..")

import os
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from utils_qwen import PERTURBATIONS, BABYLM_SPLITS, BABYLM_DATA_PATH, \
    GENRES, MARKER_TOKEN_IDS, marker_sg_token, marker_pl_token, marker_rev_token, write_file
from peft import get_peft_model, LoraConfig, TaskType  # Import PEFT components for LoRA
# import wandb

# === CONFIGURATION SETTINGS ===
perturbation = "shuffle_deterministic21"
train_set = "10M"
seed = 0
ckpt_path = "./checkpoints"
effective_bsz = 512

# === FILE PATHS BASED ON CONFIGURATION ===
run_id = f"babylm_{perturbation}_{train_set}_seed{seed}"
cache_dir = os.path.join(ckpt_path, "babylm_lora", run_id, "artifacts")
run_dir = os.path.join(ckpt_path, "babylm_lora", run_id, "runs")
os.makedirs(cache_dir, exist_ok=True)
os.makedirs(run_dir, exist_ok=True)

# Setup for Weights & Biases
# wandb.init(project="kallini", group="babylm-perturbation-experiments", name=run_id)

# === DATASET LOADING ===
dataset_name = f"babylm_{perturbation}_{train_set}_seed{seed}"
dataset = load_dataset('babylm_dataset.py', name=dataset_name, trust_remote_code=True)
train_dataset = dataset['train']

# === TOKENIZER & MODEL LOADING ===
model_name = "Qwen/Qwen2.5-0.5B"
tokenizer = PERTURBATIONS[perturbation]['qwen_tokenizer']
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=cache_dir)

# === APPLYING LoRA ===
lora_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,  # This specifies the task type
    r=16,                           # Rank of the decomposed matrices
    lora_alpha=16,                 # Amplitude of the LoRA updates
    lora_dropout=0.1,              # Dropout for LoRA layers
)
model = get_peft_model(model, lora_config)

# print("model:", model)
# for name, param in model.named_parameters():
#     if param.requires_grad:
#         print(f"Trainable parameter: {name}, shape: {param.shape}")
# === TOKENIZATION ===
def tokenize_function(examples):
    return tokenizer(examples['text'], padding="max_length", truncation=True, max_length=1024)

tokenized_train = train_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
# === DATA COLLATOR ===
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)

# === TRAINING ARGUMENTS ===
training_args = TrainingArguments(
    output_dir=run_dir,
    # evaluation_strategy="steps", # use with load_best_model_at_end=True  
    evaluation_strategy="no",
    per_device_train_batch_size=1,  # Set based on your hardware capabilities
    logging_dir='./logs',
    logging_steps=10,
    save_steps=10,
    # save_total_limit=5,
    learning_rate=5e-4,  # You may want to tune this for LoRA
    num_train_epochs=10,  # Fewer epochs might be sufficient due to the efficiency of LoRA   
    seed=seed,
    # load_best_model_at_end=True,
    gradient_accumulation_steps=1,
    fp16=True,
    warmup_ratio=0.1, 
    # report_to="wandb"
)

# === TRAINER ===
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_train,
    tokenizer=tokenizer,
    data_collator=data_collator
)

# === TRAIN MODEL ===
trainer.train()

# End logging
# wandb.finish()