File size: 19,398 Bytes
81dc001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
# utils_qwen.py
# Author: Yaning
from collections import deque
from string import punctuation
from transformers import AutoTokenizer, AddedToken
from functools import partial
from numpy.random import default_rng
# from nltk.tree import ParentedTree
import torch
##############################################################################
# CONSTANTS
##############################################################################
BABYLM_SPLITS = ['100M', '10M', 'dev', 'test', 'unittest']
# Yj: 用于在参数解析和数据加载时指定数据集
# 影响数据集的预处理过程,如生成训练、开发、测试和单元测试集。
SEEDS = [21, 57, 84]
CHECKPOINTS = list(range(50, 501, 50))
GENRES = {
"aochildes": "CHILDES",
"bnc_spoken": "British National Corpus (BNC)",
"cbt": "Children’s Book Test",
"children_stories": "Children’s Stories Text Corpus",
"gutenberg": "Standardized Project Gutenberg Corpus",
"open_subtitles": "OpenSubtitles",
"qed": "QCRI Educational Domain Corpus",
"simple_wikipedia": "Simple Wikipedia",
"switchboard": "Switchboard Dialog Act Corpus",
"wikipedia": "Wikipedia"
}
CHECKPOINT_WRITE_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_models"
CHECKPOINT_READ_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_models"
# BABYLM_DATA_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_data"
BABYLM_DATA_PATH = "."
MARKER_HOP_SING = "🅂"
MARKER_HOP_PLUR = "🄿"
MARKER_REV = "🅁"
BOS_TOKEN = "<BOS_TOKEN>"
PART_TOKENS = set(["n't", "'ll", "'s", "'re", "'ve", "'m"])
PUNCT_TOKENS = set(punctuation)
MODEL_NAME = "Qwen/Qwen2.5-7B"
##############################################################################
# PARENS MODELS (Structurally-pretrained)
##############################################################################
PAREN_MODEL_PATH = "/u/scr/isabelvp//tilt-stuff/tilt-finetuning/pretrained_checkpoints/"
PAREN_MODELS = {
"CROSS": "flat-parens_vocab500-uniform_deplength-nesting-nolimit",
"NEST": "nested-parens0.49_vocab500-uniform",
"RAND": "random_vocab500-uniform",
}
##############################################################################
# HELPER FUNCTIONS
##############################################################################
def write_file(directory, filename, lines):
f = open(directory + filename, "w")
f.writelines(lines)
f.close()
def get_qwen_tokenizer_with_markers(marker_list):
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# If no new markers to add, return normal tokenizer
if len(marker_list) == 0:
return tokenizer
# Create tokens and return modified tokenizer
new_tokens = []
for marker in marker_list:
new_tokens.append(AddedToken(marker, lstrip=True, rstrip=False))
tokenizer.add_tokens(new_tokens)
return tokenizer
qwen_original_tokenizer = get_qwen_tokenizer_with_markers([])
# GPT-2 hop tokenization
qwen_hop_tokenizer = get_qwen_tokenizer_with_markers(
[MARKER_HOP_SING, MARKER_HOP_PLUR])
# Get ids of marker tokens
marker_sg_token = qwen_hop_tokenizer.get_added_vocab()[
MARKER_HOP_SING]
# Yj:获取分词器中所有自定义添加的标记及其对应的 token ID
marker_pl_token = qwen_hop_tokenizer.get_added_vocab()[
MARKER_HOP_PLUR]
# GPT-2 reverse tokenization
qwen_rev_tokenizer = get_qwen_tokenizer_with_markers(
[MARKER_REV])
# Get ids of marker tokens
marker_rev_token = qwen_rev_tokenizer.get_added_vocab()[
MARKER_REV]
# GPT-2 determiner tokenization
qwen_det_tokenizer = get_qwen_tokenizer_with_markers(
[BOS_TOKEN])
# Get id of BOS token
bos_token_id = qwen_det_tokenizer.get_added_vocab()[BOS_TOKEN]
MARKER_TOKEN_IDS = [marker_sg_token, marker_pl_token, marker_rev_token]
def compute_surprisals(model, input_ids):
# Get the log probabilities from the model
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits[:, :-1]
shifted_input_ids = input_ids[:, 1:]
# Get the log probabilities for the actual next tokens
log_probs = torch.log2(torch.nn.functional.softmax(logits, dim=-1))
true_log_probs = log_probs.gather(
2, shifted_input_ids.unsqueeze(-1)).squeeze(-1)
# Get the negative log probabilities
neg_log_probs = (-true_log_probs).tolist()
surprisals = [[None] + probs for probs in neg_log_probs]
return surprisals
def compute_token_probabilities(model, input_ids, token_id, pad_token_id):
# Get the log probabilities from the model
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits[:, :-1]
probs = torch.nn.functional.softmax(logits, dim=-1)
# Get the probabilities for the specified token at each position
token_probs = probs[:, :, token_id]
# Convert to list and add None at the beginning to align with input tokens
# Put null probability for instances of pad token
token_probs_list = []
for batch_i, probs in enumerate(token_probs):
input_ids_seq = input_ids[batch_i].tolist() + [pad_token_id]
filtered = [p if input_ids_seq[pos_i+1] !=
pad_token_id else None for pos_i, p in enumerate(probs.tolist())]
token_probs_list.append([None] + filtered)
return token_probs_list
def merge_part_tokens(words):
result = []
for s in words:
if result and s in PART_TOKENS and len(result) > 0:
result[-1] += s
else:
result.append(s)
return result
def __affect_hop_word(word):
return word["feats"] and "Person=3" in word["feats"] \
and "Tense=Pres" in word["feats"] \
and "VerbForm=Fin" in word["feats"] \
and "Number" in word["feats"]
def __perturb_hop_words(sent, num_hops, marker_sg, marker_pl):
perturbed_tokens, _ = __perturb_hop_words_complete_hops(
sent, num_hops, marker_sg, marker_pl)
return perturbed_tokens
def check_word_hops_completed(sent, num_hops=4, marker=MARKER_HOP_SING):
_, hops_completed = __perturb_hop_words_complete_hops(
sent, num_hops, marker, marker)
return hops_completed
def __perturb_hop_words_complete_hops(sent, num_hops, marker_sg, marker_pl):
word_annotations = sent["word_annotations"].copy()
word_annotations.reverse()
hop_completed = []
new_sent = []
for word in word_annotations:
# Identify 3.pres verbs
if __affect_hop_word(word):
# Lemmatize verb if possible
new_sent.append(
word["lemma"] if word["lemma"] is not None else word["text"])
# Marker hopping logic
insert_index = len(new_sent)-1
skipped_words = 0
while skipped_words < num_hops and insert_index > 0:
# Handle edge case when punctuation (or sequence of
# punctuation) begin the sentence
if (not any([c.isalnum() for c in
"".join(new_sent[:insert_index])])):
break
# Yj: 如果字符串中不存在任何字母或数字字符(即都是标点、空格等)
# Count word as skipped if it is not a special token
if (new_sent[insert_index] not in PART_TOKENS) and \
(not set(new_sent[insert_index]).issubset(PUNCT_TOKENS)):
skipped_words += 1
insert_index -= 1
# Handle edge case when insert index is punctuation (and this is not
# sentence-initial punctuation)
if any([c.isalnum() for c in
"".join(new_sent[:insert_index])]):
while insert_index != 0 and (new_sent[insert_index] in PART_TOKENS
or set(new_sent[insert_index]).issubset(PUNCT_TOKENS)):
insert_index -= 1
# Handle edge case when token before insert index is part/aux token
if insert_index != 0 and new_sent[insert_index-1] in PART_TOKENS:
insert_index -= 1
# Log if this sentence had all full hops
hop_completed.append(skipped_words == num_hops)
# Use correct marker for singular vs. plural
if "Number=Sing" in word["feats"]:
new_sent.insert(insert_index, marker_sg)
elif "Number=Plur" in word["feats"]:
new_sent.insert(insert_index, marker_pl)
else:
raise Exception(
"Number not in verb features\n" + sent["sent_text"])
else:
new_sent.append(word["text"])
new_sent.reverse()
sent_string = " ".join(merge_part_tokens(new_sent))
tokens = qwen_hop_tokenizer.encode(sent_string)
return tokens, all(hop_completed) and len(hop_completed) > 0
def __perturb_hop_tokens(sent, num_hops):
word_annotations = sent["word_annotations"].copy()
word_annotations.reverse()
new_sent = deque()
tokens = []
for word in word_annotations:
# Identify 3.pres verbs
if __affect_hop_word(word):
# Lemmatize verb if possible
lemma = word["lemma"] if word["lemma"] is not None else word["text"]
if len(new_sent) > 0 and new_sent[0] in PART_TOKENS:
lemma = lemma + new_sent[0]
new_sent.popleft()
if len(new_sent) > 0:
sent_string = " ".join(merge_part_tokens(new_sent))
tokens = qwen_hop_tokenizer.encode(
" " + sent_string) + tokens
# Use correct marker for singular vs. plural
if "Number=Sing" in word["feats"]:
tokens.insert(num_hops, marker_sg_token)
elif "Number=Plur" in word["feats"]:
tokens.insert(num_hops, marker_pl_token)
else:
raise Exception(
"Number not in verb features\n" + sent["sent_text"])
new_sent = deque()
new_sent.append(lemma)
else:
new_sent.appendleft(word["text"])
if len(new_sent) > 0:
sent_string = " ".join(merge_part_tokens(new_sent))
tokens = qwen_hop_tokenizer.encode(sent_string) + tokens
return tokens
def __perturb_reverse(sent, rng, reverse, full):
# Get sentence text and GPT-2 tokens
tokens = qwen_rev_tokenizer.encode(sent["sent_text"])
# Pick random index to insert REV token
i = rng.choice(len(tokens)+1)
tokens.insert(i, marker_rev_token)
# Extract tokens before/after the marker, and reverse tokens after
tokens_before = tokens[:i+1]
tokens_after = tokens[i+1:]
if reverse:
tokens_after.reverse()
new_tokens = tokens_before + tokens_after
if full:
assert not reverse
new_tokens.reverse()
return new_tokens
def __perturb_shuffle_deterministic(sent, seed, shuffle):
# Get sentence text and GPT-2 tokens
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
if shuffle:
default_rng(seed).shuffle(tokens)
return tokens
def __perturb_shuffle_nondeterministic(sent, rng):
# Get sentence text and GPT-2 tokens
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
rng.shuffle(tokens)
return tokens
def __perturb_shuffle_local(sent, seed, window=5):
# Get sentence text and GPT-2 tokens
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
# Shuffle tokens in batches of size window
shuffled_tokens = []
for i in range(0, len(tokens), window):
batch = tokens[i:i+window].copy()
default_rng(seed).shuffle(batch)
shuffled_tokens += batch
return shuffled_tokens
def __perturb_shuffle_even_odd(sent):
# Get sentence text and GPT-2 tokens
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
even = [tok for i, tok in enumerate(tokens) if i % 2 == 0]
odd = [tok for i, tok in enumerate(tokens) if i % 2 != 0]
return even + odd
##############################################################################
# AFFECT FUNCTIONS
# These functions define when a perturbation has been applied to a sentence
# not. This is used for identifying which test sentences have been
# altered to separate affected vs. unaffected senences. Affect functions are
# functions of the input sentence object and return a boolean.
##############################################################################
def affect_hop(sent):
return any([__affect_hop_word(word) for word in sent['word_annotations']]) \
and sent["constituency_parse"] is not None
def affect_reverse(sent):
return True
def affect_shuffle(sent):
return True
def affect_none(sent):
return False
##############################################################################
# FILTER FUNCTIONS
# These functions define when an affected sentence should be included in the
# final dataset. For instance, hop perturbations where the marker is placed
# at the end of the sentence should be excluded. A filter function returns
# True if an affected sentence should be included in the dataset.
##############################################################################
def filter_hop(sent):
# Assertion needed since filter function is only defined for affected
# sentences
assert (affect_hop(sent))
return check_word_hops_completed(sent, 4)
def filter_reverse(sent):
return True
def filter_shuffle(sent):
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
return len(tokens) > 1 and len(tokens) <= 350
def filter_none(sent):
return False
##############################################################################
# PERTURBATION FUNCTIONS
# These functions define how a perturbation will affect a sentence. They
# take in a sentence object and an optional marker
# for verb transformations. They return a string representing the transformed
# sentence.
##############################################################################
def perturb_hop_words4(sent):
return __perturb_hop_words(sent, 4, MARKER_HOP_SING, MARKER_HOP_PLUR)
def perturb_hop_tokens4(sent):
return __perturb_hop_tokens(sent, 4)
def perturb_hop_control(sent):
return __perturb_hop_tokens(sent, 0)
def perturb_reverse(sent, rng, reverse=True, full=False):
return __perturb_reverse(sent, rng, reverse, full)
def perturb_shuffle_deterministic(sent, seed=None, shuffle=True):
return __perturb_shuffle_deterministic(sent, seed, shuffle)
def perturb_shuffle_nondeterministic(sent, rng):
return __perturb_shuffle_nondeterministic(sent, rng)
def perturb_shuffle_local(sent, seed, window):
return __perturb_shuffle_local(sent, seed, window)
def perturb_shuffle_even_odd(sent):
return __perturb_shuffle_even_odd(sent)
##############################################################################
# PERTURBATIONS
# This dict maps the name of a perturbation to its perturbation and filter
# functions. The names and functions in this dict are used throughout the
# repo.
##############################################################################
PERTURBATIONS = {
"shuffle_control": {
"perturbation_function": partial(perturb_shuffle_deterministic, seed=None, shuffle=False),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#606060",
},
"shuffle_nondeterministic": {
"perturbation_function": partial(perturb_shuffle_nondeterministic, rng=default_rng(0)),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#E8384F",
},
"shuffle_deterministic21": {
"perturbation_function": partial(perturb_shuffle_deterministic, seed=21, shuffle=True),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#FFB000",
},
"shuffle_deterministic57": {
"perturbation_function": partial(perturb_shuffle_deterministic, seed=57, shuffle=True),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#8db000",
},
"shuffle_deterministic84": {
"perturbation_function": partial(perturb_shuffle_deterministic, seed=84, shuffle=True),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#62BB35",
},
"shuffle_local3": {
"perturbation_function": partial(perturb_shuffle_local, seed=0, window=3),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#208EA3",
},
"shuffle_local5": {
"perturbation_function": partial(perturb_shuffle_local, seed=0, window=5),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#4178BC",
},
"shuffle_local10": {
"perturbation_function": partial(perturb_shuffle_local, seed=0, window=10),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#AA71FF",
},
"shuffle_even_odd": {
"perturbation_function": perturb_shuffle_even_odd,
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#E37CFF",
},
"reverse_control": {
"perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=False, full=False),
"affect_function": affect_reverse,
"filter_function": filter_reverse,
"qwen_tokenizer": qwen_rev_tokenizer,
"color": "#606060",
},
"reverse_partial": {
"perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=True, full=False),
"affect_function": affect_reverse,
"filter_function": filter_reverse,
"qwen_tokenizer": qwen_rev_tokenizer,
"color": "#E5A836",
},
"reverse_full": {
"perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=False, full=True),
"affect_function": affect_reverse,
"filter_function": filter_reverse,
"qwen_tokenizer": qwen_rev_tokenizer,
"color": "#A348A6",
},
"hop_control": {
"perturbation_function": perturb_hop_control,
"affect_function": affect_hop,
"filter_function": filter_hop,
"qwen_tokenizer": qwen_hop_tokenizer,
"color": "#606060",
},
"hop_tokens4": {
"perturbation_function": perturb_hop_tokens4,
"affect_function": affect_hop,
"filter_function": filter_hop,
"qwen_tokenizer": qwen_hop_tokenizer,
"color": "#fa8128",
},
"hop_words4": {
"perturbation_function": perturb_hop_words4,
"affect_function": affect_hop,
"filter_function": filter_hop,
"qwen_tokenizer": qwen_hop_tokenizer,
"color": "#03a0ff",
},
} |