File size: 39,672 Bytes
81dc001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
# utils_qwen.py
# Author: Yaning

from collections import deque
from string import punctuation
from transformers import AutoTokenizer, AddedToken
from functools import partial
from numpy.random import default_rng
from nltk.tree import ParentedTree
import torch


##############################################################################
# CONSTANTS
##############################################################################


BABYLM_SPLITS = ['100M', '10M', 'dev', 'test', 'unittest']
# Yj: 用于在参数解析和数据加载时指定数据集
# 影响数据集的预处理过程,如生成训练、开发、测试和单元测试集。

SEEDS = [21, 57, 84]
CHECKPOINTS = list(range(50, 501, 50))
GENRES = {
    "aochildes": "CHILDES",
    "bnc_spoken": "British National Corpus (BNC)",
    "cbt": "Children’s Book Test",
    "children_stories": "Children’s Stories Text Corpus",
    "gutenberg": "Standardized Project Gutenberg Corpus",
    "open_subtitles": "OpenSubtitles",
    "qed": "QCRI Educational Domain Corpus",
    "simple_wikipedia": "Simple Wikipedia",
    "switchboard": "Switchboard Dialog Act Corpus",
    "wikipedia": "Wikipedia"
}
CHECKPOINT_WRITE_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_models"
CHECKPOINT_READ_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_models"
# BABYLM_DATA_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_data"
BABYLM_DATA_PATH = "."
MARKER_HOP_SING = "🅂"
MARKER_HOP_PLUR = "🄿"
MARKER_REV = "🅁"
BOS_TOKEN = "<BOS_TOKEN>"
PART_TOKENS = set(["n't", "'ll", "'s", "'re", "'ve", "'m"])
PUNCT_TOKENS = set(punctuation)

MODEL_NAME = "gpt2"  


##############################################################################
# PARENS MODELS (Structurally-pretrained)
##############################################################################


PAREN_MODEL_PATH = "/u/scr/isabelvp//tilt-stuff/tilt-finetuning/pretrained_checkpoints/"
PAREN_MODELS = {
    "CROSS": "flat-parens_vocab500-uniform_deplength-nesting-nolimit",
    "NEST": "nested-parens0.49_vocab500-uniform",
    "RAND": "random_vocab500-uniform",
}


##############################################################################
# HELPER FUNCTIONS
##############################################################################


def write_file(directory, filename, lines):
    f = open(directory + filename, "w")
    f.writelines(lines)
    f.close()


def get_qwen_tokenizer_with_markers(marker_list):
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

    # If no new markers to add, return normal tokenizer
    if len(marker_list) == 0:
        return tokenizer

    # Create tokens and return modified tokenizer
    new_tokens = []
    for marker in marker_list:
        new_tokens.append(AddedToken(marker, lstrip=True, rstrip=False))
    tokenizer.add_tokens(new_tokens)
    return tokenizer


qwen_original_tokenizer = get_qwen_tokenizer_with_markers([])


# GPT-2 hop tokenization
qwen_hop_tokenizer = get_qwen_tokenizer_with_markers(
    [MARKER_HOP_SING, MARKER_HOP_PLUR])
# Get ids of marker tokens
marker_sg_token = qwen_hop_tokenizer.get_added_vocab()[
    MARKER_HOP_SING]
# Yj:获取分词器中所有自定义添加的标记及其对应的 token ID

marker_pl_token = qwen_hop_tokenizer.get_added_vocab()[
    MARKER_HOP_PLUR]


# Qwen reverse tokenization
qwen_rev_tokenizer = get_qwen_tokenizer_with_markers(
    [MARKER_REV])
# Get ids of marker tokens
marker_rev_token = qwen_rev_tokenizer.get_added_vocab()[
    MARKER_REV]

# Qwen determiner tokenization
qwen_det_tokenizer = get_qwen_tokenizer_with_markers(
    [BOS_TOKEN])
# Get id of BOS token
bos_token_id = qwen_det_tokenizer.get_added_vocab()[BOS_TOKEN]


MARKER_TOKEN_IDS = [marker_sg_token, marker_pl_token, marker_rev_token]


def compute_surprisals(model, input_ids):
    # Get the log probabilities from the model
    with torch.no_grad():
        outputs = model(input_ids)
        logits = outputs.logits[:, :-1]
        shifted_input_ids = input_ids[:, 1:]

        # Get the log probabilities for the actual next tokens
        log_probs = torch.log2(torch.nn.functional.softmax(logits, dim=-1))
        true_log_probs = log_probs.gather(
            2, shifted_input_ids.unsqueeze(-1)).squeeze(-1)

    # Get the negative log probabilities
    neg_log_probs = (-true_log_probs).tolist()
    surprisals = [[None] + probs for probs in neg_log_probs]
    return surprisals


def compute_token_probabilities(model, input_ids, token_id, pad_token_id):
    # Get the log probabilities from the model
    with torch.no_grad():
        outputs = model(input_ids)
        logits = outputs.logits[:, :-1]
        probs = torch.nn.functional.softmax(logits, dim=-1)

        # Get the probabilities for the specified token at each position
        token_probs = probs[:, :, token_id]

    # Convert to list and add None at the beginning to align with input tokens
    # Put null probability for instances of pad token
    token_probs_list = []
    for batch_i, probs in enumerate(token_probs):
        input_ids_seq = input_ids[batch_i].tolist() + [pad_token_id]
        filtered = [p if input_ids_seq[pos_i+1] !=
                    pad_token_id else None for pos_i, p in enumerate(probs.tolist())]
        token_probs_list.append([None] + filtered)

    return token_probs_list


def merge_part_tokens(words):
    result = []
    for s in words:
        if result and s in PART_TOKENS and len(result) > 0:
            result[-1] += s
        else:
            result.append(s)
    return result


def __affect_hop_word(word):
    return word["feats"] and "Person=3" in word["feats"] \
        and "Tense=Pres" in word["feats"] \
        and "VerbForm=Fin" in word["feats"] \
        and "Number" in word["feats"]


def __perturb_hop_words(sent, num_hops, marker_sg, marker_pl):
    perturbed_tokens, _ = __perturb_hop_words_complete_hops(
        sent, num_hops, marker_sg, marker_pl)
    return perturbed_tokens


def check_word_hops_completed(sent, num_hops=4, marker=MARKER_HOP_SING):
    _, hops_completed = __perturb_hop_words_complete_hops(
        sent, num_hops, marker, marker)
    return hops_completed


def __perturb_hop_words_complete_hops(sent, num_hops, marker_sg, marker_pl):

    word_annotations = sent["word_annotations"].copy()
    word_annotations.reverse()

    hop_completed = []
    new_sent = []
    for word in word_annotations:

        # Identify 3.pres verbs
        if __affect_hop_word(word):

            # Lemmatize verb if possible
            new_sent.append(
                word["lemma"] if word["lemma"] is not None else word["text"])

            # Marker hopping logic
            insert_index = len(new_sent)-1
            skipped_words = 0
            while skipped_words < num_hops and insert_index > 0:

                # Handle edge case when punctuation (or sequence of
                # punctuation) begin the sentence
                if (not any([c.isalnum() for c in
                             "".join(new_sent[:insert_index])])):
                    break
                
                # Yj: 如果字符串中不存在任何字母或数字字符(即都是标点、空格等)

                # Count word as skipped if it is not a special token
                if (new_sent[insert_index] not in PART_TOKENS) and \
                        (not set(new_sent[insert_index]).issubset(PUNCT_TOKENS)):
                    skipped_words += 1
                insert_index -= 1

            # Handle edge case when insert index is punctuation (and this is not
            # sentence-initial punctuation)
            if any([c.isalnum() for c in
                    "".join(new_sent[:insert_index])]):
                while insert_index != 0 and (new_sent[insert_index] in PART_TOKENS
                                             or set(new_sent[insert_index]).issubset(PUNCT_TOKENS)):
                    insert_index -= 1

            # Handle edge case when token before insert index is part/aux token
            if insert_index != 0 and new_sent[insert_index-1] in PART_TOKENS:
                insert_index -= 1

            # Log if this sentence had all full hops
            hop_completed.append(skipped_words == num_hops)

            # Use correct marker for singular vs. plural
            if "Number=Sing" in word["feats"]:
                new_sent.insert(insert_index, marker_sg)
            elif "Number=Plur" in word["feats"]:
                new_sent.insert(insert_index, marker_pl)
            else:
                raise Exception(
                    "Number not in verb features\n" + sent["sent_text"])

        else:
            new_sent.append(word["text"])

    new_sent.reverse()
    sent_string = " ".join(merge_part_tokens(new_sent))
    tokens = qwen_hop_tokenizer.encode(sent_string)
    return tokens, all(hop_completed) and len(hop_completed) > 0


def __perturb_hop_tokens(sent, num_hops):

    word_annotations = sent["word_annotations"].copy()
    word_annotations.reverse()

    new_sent = deque()
    tokens = []
    for word in word_annotations:

        # Identify 3.pres verbs
        if __affect_hop_word(word):

            # Lemmatize verb if possible
            lemma = word["lemma"] if word["lemma"] is not None else word["text"]

            if len(new_sent) > 0 and new_sent[0] in PART_TOKENS:
                lemma = lemma + new_sent[0]
                new_sent.popleft()

            if len(new_sent) > 0:
                sent_string = " ".join(merge_part_tokens(new_sent))
                tokens = qwen_hop_tokenizer.encode(
                    " " + sent_string) + tokens

            # Use correct marker for singular vs. plural
            if "Number=Sing" in word["feats"]:
                tokens.insert(num_hops, marker_sg_token)
            elif "Number=Plur" in word["feats"]:
                tokens.insert(num_hops, marker_pl_token)
            else:
                raise Exception(
                    "Number not in verb features\n" + sent["sent_text"])

            new_sent = deque()
            new_sent.append(lemma)

        else:
            new_sent.appendleft(word["text"])

    if len(new_sent) > 0:
        sent_string = " ".join(merge_part_tokens(new_sent))
        tokens = qwen_hop_tokenizer.encode(sent_string) + tokens
    return tokens


def __perturb_reverse(sent, rng, reverse, full):

    # Get sentence text and GPT-2 tokens
    tokens = qwen_rev_tokenizer.encode(sent["sent_text"])

    # Pick random index to insert REV token
    i = rng.choice(len(tokens)+1)
    tokens.insert(i, marker_rev_token)

    # Extract tokens before/after the marker, and reverse tokens after
    tokens_before = tokens[:i+1]
    tokens_after = tokens[i+1:]
    if reverse:
        tokens_after.reverse()
    new_tokens = tokens_before + tokens_after
    if full:
        assert not reverse
        new_tokens.reverse()

    return new_tokens


def __perturb_shuffle_deterministic(sent, seed, shuffle):
    # Get sentence text and GPT-2 tokens
    tokens = qwen_original_tokenizer.encode(sent["sent_text"])
    if shuffle:
        default_rng(seed).shuffle(tokens)
    return tokens


def __perturb_shuffle_nondeterministic(sent, rng):
    # Get sentence text and GPT-2 tokens
    tokens = qwen_original_tokenizer.encode(sent["sent_text"])
    rng.shuffle(tokens)
    return tokens


def __perturb_shuffle_local(sent, seed, window=5):
    # Get sentence text and GPT-2 tokens
    tokens = qwen_original_tokenizer.encode(sent["sent_text"])

    # Shuffle tokens in batches of size window
    shuffled_tokens = []
    for i in range(0, len(tokens), window):
        batch = tokens[i:i+window].copy()
        default_rng(seed).shuffle(batch)
        shuffled_tokens += batch

    return shuffled_tokens


def __perturb_shuffle_even_odd(sent):
    # Get sentence text and GPT-2 tokens
    tokens = qwen_original_tokenizer.encode(sent["sent_text"])
    even = [tok for i, tok in enumerate(tokens) if i % 2 == 0]
    odd = [tok for i, tok in enumerate(tokens) if i % 2 != 0]
    return even + odd


##############################################################################
# AFFECT FUNCTIONS
# These functions define when a perturbation has been applied to a sentence
# not. This is used for identifying which test sentences have been
# altered to separate affected vs. unaffected senences. Affect functions are
# functions of the input sentence object and return a boolean.
##############################################################################


def affect_hop(sent):
    return any([__affect_hop_word(word) for word in sent['word_annotations']]) \
        and sent["constituency_parse"] is not None


def affect_reverse(sent):
    return True


def affect_shuffle(sent):
    return True


def affect_none(sent):
    return False


##############################################################################
# FILTER FUNCTIONS
# These functions define when an affected sentence should be included in the
# final dataset. For instance, hop perturbations where the marker is placed
# at the end of the sentence should be excluded. A filter function returns
# True if an affected sentence should be included in the dataset.
##############################################################################


def filter_hop(sent):
    # Assertion needed since filter function is only defined for affected
    # sentences
    assert (affect_hop(sent))
    return check_word_hops_completed(sent, 4)


def filter_reverse(sent):
    return True


def filter_shuffle(sent):
    tokens = qwen_original_tokenizer.encode(sent["sent_text"])
    return len(tokens) > 1 and len(tokens) <= 350


def filter_none(sent):
    return False


##############################################################################
# PERTURBATION FUNCTIONS
# These functions define how a perturbation will affect a sentence. They
# take in a sentence object and an optional marker
# for verb transformations. They return a string representing the transformed
# sentence.
##############################################################################


def perturb_hop_words4(sent):
    return __perturb_hop_words(sent, 4, MARKER_HOP_SING, MARKER_HOP_PLUR)


def perturb_hop_tokens4(sent):
    return __perturb_hop_tokens(sent, 4)


def perturb_hop_control(sent):
    return __perturb_hop_tokens(sent, 0)


def perturb_reverse(sent, rng, reverse=True, full=False):
    return __perturb_reverse(sent, rng, reverse, full)


def perturb_shuffle_deterministic(sent, seed=None, shuffle=True):
    return __perturb_shuffle_deterministic(sent, seed, shuffle)


def perturb_shuffle_nondeterministic(sent, rng):
    return __perturb_shuffle_nondeterministic(sent, rng)


def perturb_shuffle_local(sent, seed, window):
    return __perturb_shuffle_local(sent, seed, window)


def perturb_shuffle_even_odd(sent):
    return __perturb_shuffle_even_odd(sent)


##############################################################################
# PERTURBATIONS
# This dict maps the name of a perturbation to its perturbation and filter
# functions. The names and functions in this dict are used throughout the
# repo.
##############################################################################


PERTURBATIONS = {
    "shuffle_control": {
        "perturbation_function": partial(perturb_shuffle_deterministic, seed=None, shuffle=False),
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#606060",                                           
    },
    "shuffle_nondeterministic": {
        "perturbation_function": partial(perturb_shuffle_nondeterministic, rng=default_rng(0)),
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#E8384F",
    },
    "shuffle_deterministic21": {
        "perturbation_function": partial(perturb_shuffle_deterministic, seed=21, shuffle=True),
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#FFB000",
    },
    "shuffle_deterministic57": {
        "perturbation_function": partial(perturb_shuffle_deterministic, seed=57, shuffle=True),
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#8db000",
    },
    "shuffle_deterministic84": {
        "perturbation_function": partial(perturb_shuffle_deterministic, seed=84, shuffle=True),
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#62BB35",
    },
    "shuffle_local3": {
        "perturbation_function": partial(perturb_shuffle_local, seed=0, window=3),
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#208EA3",
    },
    "shuffle_local5": {
        "perturbation_function": partial(perturb_shuffle_local, seed=0, window=5),
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#4178BC",
    },
    "shuffle_local10": {
        "perturbation_function": partial(perturb_shuffle_local, seed=0, window=10),
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#AA71FF",
    },
    "shuffle_even_odd": {
        "perturbation_function": perturb_shuffle_even_odd,
        "affect_function": affect_shuffle,
        "filter_function": filter_shuffle,
        "qwen_tokenizer": qwen_original_tokenizer,
        "color": "#E37CFF",
    },
    "reverse_control": {
        "perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=False, full=False),
        "affect_function": affect_reverse,
        "filter_function": filter_reverse,
        "qwen_tokenizer": qwen_rev_tokenizer,
        "color": "#606060",
    },
    "reverse_partial": {
        "perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=True, full=False),
        "affect_function": affect_reverse,
        "filter_function": filter_reverse,
        "qwen_tokenizer": qwen_rev_tokenizer,
        "color": "#E5A836",
    },
    "reverse_full": {
        "perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=False, full=True),
        "affect_function": affect_reverse,
        "filter_function": filter_reverse,
        "qwen_tokenizer": qwen_rev_tokenizer,
        "color": "#A348A6",
    },
    "hop_control": {
        "perturbation_function": perturb_hop_control,
        "affect_function": affect_hop,
        "filter_function": filter_hop,
        "qwen_tokenizer": qwen_hop_tokenizer,
        "color": "#606060",
    },
    "hop_tokens4": {
        "perturbation_function": perturb_hop_tokens4,
        "affect_function": affect_hop,
        "filter_function": filter_hop,
        "qwen_tokenizer": qwen_hop_tokenizer,
        "color": "#fa8128", 
    },
    "hop_words4": {
        "perturbation_function": perturb_hop_words4,
        "affect_function": affect_hop,
        "filter_function": filter_hop,
        "qwen_tokenizer": qwen_hop_tokenizer,
        "color": "#03a0ff",
    },
}


# # utils.py
# # Author: Julie Kallini

# from collections import deque
# from string import punctuation
# from transformers import AutoTokenizer, AddedToken
# from functools import partial
# from numpy.random import default_rng
# from nltk.tree import ParentedTree
# import torch


# ##############################################################################
# # CONSTANTS
# ##############################################################################


# BABYLM_SPLITS = ['100M', '10M', 'dev', 'test', 'unittest']
# # Yj: 用于在参数解析和数据加载时指定数据集
# # 影响数据集的预处理过程,如生成训练、开发、测试和单元测试集。

# SEEDS = [21, 57, 84]
# CHECKPOINTS = list(range(50, 501, 50))
# GENRES = {
#     "aochildes": "CHILDES",
#     "bnc_spoken": "British National Corpus (BNC)",
#     "cbt": "Children’s Book Test",
#     "children_stories": "Children’s Stories Text Corpus",
#     "gutenberg": "Standardized Project Gutenberg Corpus",
#     "open_subtitles": "OpenSubtitles",
#     "qed": "QCRI Educational Domain Corpus",
#     "simple_wikipedia": "Simple Wikipedia",
#     "switchboard": "Switchboard Dialog Act Corpus",
#     "wikipedia": "Wikipedia"
# }
# CHECKPOINT_WRITE_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_models"
# CHECKPOINT_READ_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_models"
# # BABYLM_DATA_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_data"
# BABYLM_DATA_PATH = "."
# MARKER_HOP_SING = "🅂"
# MARKER_HOP_PLUR = "🄿"
# MARKER_REV = "🅁"
# BOS_TOKEN = "<BOS_TOKEN>"
# PART_TOKENS = set(["n't", "'ll", "'s", "'re", "'ve", "'m"])
# PUNCT_TOKENS = set(punctuation)


# ##############################################################################
# # PARENS MODELS (Structurally-pretrained)
# ##############################################################################


# PAREN_MODEL_PATH = "/u/scr/isabelvp//tilt-stuff/tilt-finetuning/pretrained_checkpoints/"
# PAREN_MODELS = {
#     "CROSS": "flat-parens_vocab500-uniform_deplength-nesting-nolimit",
#     "NEST": "nested-parens0.49_vocab500-uniform",
#     "RAND": "random_vocab500-uniform",
# }


# ##############################################################################
# # HELPER FUNCTIONS
# ##############################################################################


# def write_file(directory, filename, lines):
#     f = open(directory + filename, "w")
#     f.writelines(lines)
#     f.close()


# def get_gpt2_tokenizer_with_markers(marker_list):
#     tokenizer = AutoTokenizer.from_pretrained("gpt2")

#     # If no new markers to add, return normal tokenizer
#     if len(marker_list) == 0:
#         return tokenizer

#     # Create tokens and return modified tokenizer
#     new_tokens = []
#     for marker in marker_list:
#         new_tokens.append(AddedToken(marker, lstrip=True, rstrip=False))
#     tokenizer.add_tokens(new_tokens)
#     return tokenizer


# gpt2_original_tokenizer = get_gpt2_tokenizer_with_markers([])


# # GPT-2 hop tokenization
# gpt2_hop_tokenizer = get_gpt2_tokenizer_with_markers(
#     [MARKER_HOP_SING, MARKER_HOP_PLUR])
# # Get ids of marker tokens
# marker_sg_token = gpt2_hop_tokenizer.get_added_vocab()[
#     MARKER_HOP_SING]
# # Yj:获取分词器中所有自定义添加的标记及其对应的 token ID

# marker_pl_token = gpt2_hop_tokenizer.get_added_vocab()[
#     MARKER_HOP_PLUR]


# # GPT-2 reverse tokenization
# gpt2_rev_tokenizer = get_gpt2_tokenizer_with_markers(
#     [MARKER_REV])
# # Get ids of marker tokens
# marker_rev_token = gpt2_rev_tokenizer.get_added_vocab()[
#     MARKER_REV]

# # GPT-2 determiner tokenization
# gpt2_det_tokenizer = get_gpt2_tokenizer_with_markers(
#     [BOS_TOKEN])
# # Get id of BOS token
# bos_token_id = gpt2_det_tokenizer.get_added_vocab()[BOS_TOKEN]


# MARKER_TOKEN_IDS = [marker_sg_token, marker_pl_token, marker_rev_token]


# def compute_surprisals(model, input_ids):
#     # Get the log probabilities from the model
#     with torch.no_grad():
#         outputs = model(input_ids)
#         logits = outputs.logits[:, :-1]
#         shifted_input_ids = input_ids[:, 1:]

#         # Get the log probabilities for the actual next tokens
#         log_probs = torch.log2(torch.nn.functional.softmax(logits, dim=-1))
#         true_log_probs = log_probs.gather(
#             2, shifted_input_ids.unsqueeze(-1)).squeeze(-1)

#     # Get the negative log probabilities
#     neg_log_probs = (-true_log_probs).tolist()
#     surprisals = [[None] + probs for probs in neg_log_probs]
#     return surprisals


# def compute_token_probabilities(model, input_ids, token_id, pad_token_id):
#     # Get the log probabilities from the model
#     with torch.no_grad():
#         outputs = model(input_ids)
#         logits = outputs.logits[:, :-1]
#         probs = torch.nn.functional.softmax(logits, dim=-1)

#         # Get the probabilities for the specified token at each position
#         token_probs = probs[:, :, token_id]

#     # Convert to list and add None at the beginning to align with input tokens
#     # Put null probability for instances of pad token
#     token_probs_list = []
#     for batch_i, probs in enumerate(token_probs):
#         input_ids_seq = input_ids[batch_i].tolist() + [pad_token_id]
#         filtered = [p if input_ids_seq[pos_i+1] !=
#                     pad_token_id else None for pos_i, p in enumerate(probs.tolist())]
#         token_probs_list.append([None] + filtered)

#     return token_probs_list


# def merge_part_tokens(words):
#     result = []
#     for s in words:
#         if result and s in PART_TOKENS and len(result) > 0:
#             result[-1] += s
#         else:
#             result.append(s)
#     return result


# def __affect_hop_word(word):
#     return word["feats"] and "Person=3" in word["feats"] \
#         and "Tense=Pres" in word["feats"] \
#         and "VerbForm=Fin" in word["feats"] \
#         and "Number" in word["feats"]


# def __perturb_hop_words(sent, num_hops, marker_sg, marker_pl):
#     perturbed_tokens, _ = __perturb_hop_words_complete_hops(
#         sent, num_hops, marker_sg, marker_pl)
#     return perturbed_tokens


# def check_word_hops_completed(sent, num_hops=4, marker=MARKER_HOP_SING):
#     _, hops_completed = __perturb_hop_words_complete_hops(
#         sent, num_hops, marker, marker)
#     return hops_completed


# def __perturb_hop_words_complete_hops(sent, num_hops, marker_sg, marker_pl):

#     word_annotations = sent["word_annotations"].copy()
#     word_annotations.reverse()

#     hop_completed = []
#     new_sent = []
#     for word in word_annotations:

#         # Identify 3.pres verbs
#         if __affect_hop_word(word):

#             # Lemmatize verb if possible
#             new_sent.append(
#                 word["lemma"] if word["lemma"] is not None else word["text"])

#             # Marker hopping logic
#             insert_index = len(new_sent)-1
#             skipped_words = 0
#             while skipped_words < num_hops and insert_index > 0:

#                 # Handle edge case when punctuation (or sequence of
#                 # punctuation) begin the sentence
#                 if (not any([c.isalnum() for c in
#                              "".join(new_sent[:insert_index])])):
#                     break
                
#                 # Yj: 如果字符串中不存在任何字母或数字字符(即都是标点、空格等)

#                 # Count word as skipped if it is not a special token
#                 if (new_sent[insert_index] not in PART_TOKENS) and \
#                         (not set(new_sent[insert_index]).issubset(PUNCT_TOKENS)):
#                     skipped_words += 1
#                 insert_index -= 1

#             # Handle edge case when insert index is punctuation (and this is not
#             # sentence-initial punctuation)
#             if any([c.isalnum() for c in
#                     "".join(new_sent[:insert_index])]):
#                 while insert_index != 0 and (new_sent[insert_index] in PART_TOKENS
#                                              or set(new_sent[insert_index]).issubset(PUNCT_TOKENS)):
#                     insert_index -= 1

#             # Handle edge case when token before insert index is part/aux token
#             if insert_index != 0 and new_sent[insert_index-1] in PART_TOKENS:
#                 insert_index -= 1

#             # Log if this sentence had all full hops
#             hop_completed.append(skipped_words == num_hops)

#             # Use correct marker for singular vs. plural
#             if "Number=Sing" in word["feats"]:
#                 new_sent.insert(insert_index, marker_sg)
#             elif "Number=Plur" in word["feats"]:
#                 new_sent.insert(insert_index, marker_pl)
#             else:
#                 raise Exception(
#                     "Number not in verb features\n" + sent["sent_text"])

#         else:
#             new_sent.append(word["text"])

#     new_sent.reverse()
#     sent_string = " ".join(merge_part_tokens(new_sent))
#     tokens = gpt2_hop_tokenizer.encode(sent_string)
#     return tokens, all(hop_completed) and len(hop_completed) > 0


# def __perturb_hop_tokens(sent, num_hops):

#     word_annotations = sent["word_annotations"].copy()
#     word_annotations.reverse()

#     new_sent = deque()
#     tokens = []
#     for word in word_annotations:

#         # Identify 3.pres verbs
#         if __affect_hop_word(word):

#             # Lemmatize verb if possible
#             lemma = word["lemma"] if word["lemma"] is not None else word["text"]

#             if len(new_sent) > 0 and new_sent[0] in PART_TOKENS:
#                 lemma = lemma + new_sent[0]
#                 new_sent.popleft()

#             if len(new_sent) > 0:
#                 sent_string = " ".join(merge_part_tokens(new_sent))
#                 tokens = gpt2_hop_tokenizer.encode(
#                     " " + sent_string) + tokens

#             # Use correct marker for singular vs. plural
#             if "Number=Sing" in word["feats"]:
#                 tokens.insert(num_hops, marker_sg_token)
#             elif "Number=Plur" in word["feats"]:
#                 tokens.insert(num_hops, marker_pl_token)
#             else:
#                 raise Exception(
#                     "Number not in verb features\n" + sent["sent_text"])

#             new_sent = deque()
#             new_sent.append(lemma)

#         else:
#             new_sent.appendleft(word["text"])

#     if len(new_sent) > 0:
#         sent_string = " ".join(merge_part_tokens(new_sent))
#         tokens = gpt2_hop_tokenizer.encode(sent_string) + tokens
#     return tokens


# def __perturb_reverse(sent, rng, reverse, full):

#     # Get sentence text and GPT-2 tokens
#     tokens = gpt2_rev_tokenizer.encode(sent["sent_text"])

#     # Pick random index to insert REV token
#     i = rng.choice(len(tokens)+1)
#     tokens.insert(i, marker_rev_token)

#     # Extract tokens before/after the marker, and reverse tokens after
#     tokens_before = tokens[:i+1]
#     tokens_after = tokens[i+1:]
#     if reverse:
#         tokens_after.reverse()
#     new_tokens = tokens_before + tokens_after
#     if full:
#         assert not reverse
#         new_tokens.reverse()

#     return new_tokens


# def __perturb_shuffle_deterministic(sent, seed, shuffle):
#     # Get sentence text and GPT-2 tokens
#     tokens = gpt2_original_tokenizer.encode(sent["sent_text"])
#     if shuffle:
#         default_rng(seed).shuffle(tokens)
#     return tokens


# def __perturb_shuffle_nondeterministic(sent, rng):
#     # Get sentence text and GPT-2 tokens
#     tokens = gpt2_original_tokenizer.encode(sent["sent_text"])
#     rng.shuffle(tokens)
#     return tokens


# def __perturb_shuffle_local(sent, seed, window=5):
#     # Get sentence text and GPT-2 tokens
#     tokens = gpt2_original_tokenizer.encode(sent["sent_text"])

#     # Shuffle tokens in batches of size window
#     shuffled_tokens = []
#     for i in range(0, len(tokens), window):
#         batch = tokens[i:i+window].copy()
#         default_rng(seed).shuffle(batch)
#         shuffled_tokens += batch

#     return shuffled_tokens


# def __perturb_shuffle_even_odd(sent):
#     # Get sentence text and GPT-2 tokens
#     tokens = gpt2_original_tokenizer.encode(sent["sent_text"])
#     even = [tok for i, tok in enumerate(tokens) if i % 2 == 0]
#     odd = [tok for i, tok in enumerate(tokens) if i % 2 != 0]
#     return even + odd


# ##############################################################################
# # AFFECT FUNCTIONS
# # These functions define when a perturbation has been applied to a sentence
# # not. This is used for identifying which test sentences have been
# # altered to separate affected vs. unaffected senences. Affect functions are
# # functions of the input sentence object and return a boolean.
# ##############################################################################


# def affect_hop(sent):
#     return any([__affect_hop_word(word) for word in sent['word_annotations']]) \
#         and sent["constituency_parse"] is not None


# def affect_reverse(sent):
#     return True


# def affect_shuffle(sent):
#     return True


# def affect_none(sent):
#     return False


# ##############################################################################
# # FILTER FUNCTIONS
# # These functions define when an affected sentence should be included in the
# # final dataset. For instance, hop perturbations where the marker is placed
# # at the end of the sentence should be excluded. A filter function returns
# # True if an affected sentence should be included in the dataset.
# ##############################################################################


# def filter_hop(sent):
#     # Assertion needed since filter function is only defined for affected
#     # sentences
#     assert (affect_hop(sent))
#     return check_word_hops_completed(sent, 4)


# def filter_reverse(sent):
#     return True


# def filter_shuffle(sent):
#     tokens = gpt2_original_tokenizer.encode(sent["sent_text"])
#     return len(tokens) > 1 and len(tokens) <= 350


# def filter_none(sent):
#     return False


# ##############################################################################
# # PERTURBATION FUNCTIONS
# # These functions define how a perturbation will affect a sentence. They
# # take in a sentence object and an optional marker
# # for verb transformations. They return a string representing the transformed
# # sentence.
# ##############################################################################


# def perturb_hop_words4(sent):
#     return __perturb_hop_words(sent, 4, MARKER_HOP_SING, MARKER_HOP_PLUR)


# def perturb_hop_tokens4(sent):
#     return __perturb_hop_tokens(sent, 4)


# def perturb_hop_control(sent):
#     return __perturb_hop_tokens(sent, 0)


# def perturb_reverse(sent, rng, reverse=True, full=False):
#     return __perturb_reverse(sent, rng, reverse, full)


# def perturb_shuffle_deterministic(sent, seed=None, shuffle=True):
#     return __perturb_shuffle_deterministic(sent, seed, shuffle)


# def perturb_shuffle_nondeterministic(sent, rng):
#     return __perturb_shuffle_nondeterministic(sent, rng)


# def perturb_shuffle_local(sent, seed, window):
#     return __perturb_shuffle_local(sent, seed, window)


# def perturb_shuffle_even_odd(sent):
#     return __perturb_shuffle_even_odd(sent)


# ##############################################################################
# # PERTURBATIONS
# # This dict maps the name of a perturbation to its perturbation and filter
# # functions. The names and functions in this dict are used throughout the
# # repo.
# ##############################################################################


# PERTURBATIONS = {
#     "shuffle_control": {
#         "perturbation_function": partial(perturb_shuffle_deterministic, seed=None, shuffle=False),
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#606060",
#     },
#     "shuffle_nondeterministic": {
#         "perturbation_function": partial(perturb_shuffle_nondeterministic, rng=default_rng(0)),
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#E8384F",
#     },
#     "shuffle_deterministic21": {
#         "perturbation_function": partial(perturb_shuffle_deterministic, seed=21, shuffle=True),
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#FFB000",
#     },
#     "shuffle_deterministic57": {
#         "perturbation_function": partial(perturb_shuffle_deterministic, seed=57, shuffle=True),
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#8db000",
#     },
#     "shuffle_deterministic84": {
#         "perturbation_function": partial(perturb_shuffle_deterministic, seed=84, shuffle=True),
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#62BB35",
#     },
#     "shuffle_local3": {
#         "perturbation_function": partial(perturb_shuffle_local, seed=0, window=3),
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#208EA3",
#     },
#     "shuffle_local5": {
#         "perturbation_function": partial(perturb_shuffle_local, seed=0, window=5),
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#4178BC",
#     },
#     "shuffle_local10": {
#         "perturbation_function": partial(perturb_shuffle_local, seed=0, window=10),
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#AA71FF",
#     },
#     "shuffle_even_odd": {
#         "perturbation_function": perturb_shuffle_even_odd,
#         "affect_function": affect_shuffle,
#         "filter_function": filter_shuffle,
#         "gpt2_tokenizer": gpt2_original_tokenizer,
#         "color": "#E37CFF",
#     },
#     "reverse_control": {
#         "perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=False, full=False),
#         "affect_function": affect_reverse,
#         "filter_function": filter_reverse,
#         "gpt2_tokenizer": gpt2_rev_tokenizer,
#         "color": "#606060",
#     },
#     "reverse_partial": {
#         "perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=True, full=False),
#         "affect_function": affect_reverse,
#         "filter_function": filter_reverse,
#         "gpt2_tokenizer": gpt2_rev_tokenizer,
#         "color": "#E5A836",
#     },
#     "reverse_full": {
#         "perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=False, full=True),
#         "affect_function": affect_reverse,
#         "filter_function": filter_reverse,
#         "gpt2_tokenizer": gpt2_rev_tokenizer,
#         "color": "#A348A6",
#     },
#     "hop_control": {
#         "perturbation_function": perturb_hop_control,
#         "affect_function": affect_hop,
#         "filter_function": filter_hop,
#         "gpt2_tokenizer": gpt2_hop_tokenizer,
#         "color": "#606060",
#     },
#     "hop_tokens4": {
#         "perturbation_function": perturb_hop_tokens4,
#         "affect_function": affect_hop,
#         "filter_function": filter_hop,
#         "gpt2_tokenizer": gpt2_hop_tokenizer,
#         "color": "#fa8128", 
#     },
#     "hop_words4": {
#         "perturbation_function": perturb_hop_words4,
#         "affect_function": affect_hop,
#         "filter_function": filter_hop,
#         "gpt2_tokenizer": gpt2_hop_tokenizer,
#         "color": "#03a0ff",
#     },
# }