Impossible_llm / utils_qwen.py
Yaning1001's picture
Add files using upload-large-folder tool
81dc001 verified
raw
history blame
19.4 kB
# utils_qwen.py
# Author: Yaning
from collections import deque
from string import punctuation
from transformers import AutoTokenizer, AddedToken
from functools import partial
from numpy.random import default_rng
# from nltk.tree import ParentedTree
import torch
##############################################################################
# CONSTANTS
##############################################################################
BABYLM_SPLITS = ['100M', '10M', 'dev', 'test', 'unittest']
# Yj: 用于在参数解析和数据加载时指定数据集
# 影响数据集的预处理过程,如生成训练、开发、测试和单元测试集。
SEEDS = [21, 57, 84]
CHECKPOINTS = list(range(50, 501, 50))
GENRES = {
"aochildes": "CHILDES",
"bnc_spoken": "British National Corpus (BNC)",
"cbt": "Children’s Book Test",
"children_stories": "Children’s Stories Text Corpus",
"gutenberg": "Standardized Project Gutenberg Corpus",
"open_subtitles": "OpenSubtitles",
"qed": "QCRI Educational Domain Corpus",
"simple_wikipedia": "Simple Wikipedia",
"switchboard": "Switchboard Dialog Act Corpus",
"wikipedia": "Wikipedia"
}
CHECKPOINT_WRITE_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_models"
CHECKPOINT_READ_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_models"
# BABYLM_DATA_PATH = "/nlp/scr3/nlp/llms-in-llms/babylm_data"
BABYLM_DATA_PATH = "."
MARKER_HOP_SING = "🅂"
MARKER_HOP_PLUR = "🄿"
MARKER_REV = "🅁"
BOS_TOKEN = "<BOS_TOKEN>"
PART_TOKENS = set(["n't", "'ll", "'s", "'re", "'ve", "'m"])
PUNCT_TOKENS = set(punctuation)
MODEL_NAME = "Qwen/Qwen2.5-7B"
##############################################################################
# PARENS MODELS (Structurally-pretrained)
##############################################################################
PAREN_MODEL_PATH = "/u/scr/isabelvp//tilt-stuff/tilt-finetuning/pretrained_checkpoints/"
PAREN_MODELS = {
"CROSS": "flat-parens_vocab500-uniform_deplength-nesting-nolimit",
"NEST": "nested-parens0.49_vocab500-uniform",
"RAND": "random_vocab500-uniform",
}
##############################################################################
# HELPER FUNCTIONS
##############################################################################
def write_file(directory, filename, lines):
f = open(directory + filename, "w")
f.writelines(lines)
f.close()
def get_qwen_tokenizer_with_markers(marker_list):
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# If no new markers to add, return normal tokenizer
if len(marker_list) == 0:
return tokenizer
# Create tokens and return modified tokenizer
new_tokens = []
for marker in marker_list:
new_tokens.append(AddedToken(marker, lstrip=True, rstrip=False))
tokenizer.add_tokens(new_tokens)
return tokenizer
qwen_original_tokenizer = get_qwen_tokenizer_with_markers([])
# GPT-2 hop tokenization
qwen_hop_tokenizer = get_qwen_tokenizer_with_markers(
[MARKER_HOP_SING, MARKER_HOP_PLUR])
# Get ids of marker tokens
marker_sg_token = qwen_hop_tokenizer.get_added_vocab()[
MARKER_HOP_SING]
# Yj:获取分词器中所有自定义添加的标记及其对应的 token ID
marker_pl_token = qwen_hop_tokenizer.get_added_vocab()[
MARKER_HOP_PLUR]
# GPT-2 reverse tokenization
qwen_rev_tokenizer = get_qwen_tokenizer_with_markers(
[MARKER_REV])
# Get ids of marker tokens
marker_rev_token = qwen_rev_tokenizer.get_added_vocab()[
MARKER_REV]
# GPT-2 determiner tokenization
qwen_det_tokenizer = get_qwen_tokenizer_with_markers(
[BOS_TOKEN])
# Get id of BOS token
bos_token_id = qwen_det_tokenizer.get_added_vocab()[BOS_TOKEN]
MARKER_TOKEN_IDS = [marker_sg_token, marker_pl_token, marker_rev_token]
def compute_surprisals(model, input_ids):
# Get the log probabilities from the model
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits[:, :-1]
shifted_input_ids = input_ids[:, 1:]
# Get the log probabilities for the actual next tokens
log_probs = torch.log2(torch.nn.functional.softmax(logits, dim=-1))
true_log_probs = log_probs.gather(
2, shifted_input_ids.unsqueeze(-1)).squeeze(-1)
# Get the negative log probabilities
neg_log_probs = (-true_log_probs).tolist()
surprisals = [[None] + probs for probs in neg_log_probs]
return surprisals
def compute_token_probabilities(model, input_ids, token_id, pad_token_id):
# Get the log probabilities from the model
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits[:, :-1]
probs = torch.nn.functional.softmax(logits, dim=-1)
# Get the probabilities for the specified token at each position
token_probs = probs[:, :, token_id]
# Convert to list and add None at the beginning to align with input tokens
# Put null probability for instances of pad token
token_probs_list = []
for batch_i, probs in enumerate(token_probs):
input_ids_seq = input_ids[batch_i].tolist() + [pad_token_id]
filtered = [p if input_ids_seq[pos_i+1] !=
pad_token_id else None for pos_i, p in enumerate(probs.tolist())]
token_probs_list.append([None] + filtered)
return token_probs_list
def merge_part_tokens(words):
result = []
for s in words:
if result and s in PART_TOKENS and len(result) > 0:
result[-1] += s
else:
result.append(s)
return result
def __affect_hop_word(word):
return word["feats"] and "Person=3" in word["feats"] \
and "Tense=Pres" in word["feats"] \
and "VerbForm=Fin" in word["feats"] \
and "Number" in word["feats"]
def __perturb_hop_words(sent, num_hops, marker_sg, marker_pl):
perturbed_tokens, _ = __perturb_hop_words_complete_hops(
sent, num_hops, marker_sg, marker_pl)
return perturbed_tokens
def check_word_hops_completed(sent, num_hops=4, marker=MARKER_HOP_SING):
_, hops_completed = __perturb_hop_words_complete_hops(
sent, num_hops, marker, marker)
return hops_completed
def __perturb_hop_words_complete_hops(sent, num_hops, marker_sg, marker_pl):
word_annotations = sent["word_annotations"].copy()
word_annotations.reverse()
hop_completed = []
new_sent = []
for word in word_annotations:
# Identify 3.pres verbs
if __affect_hop_word(word):
# Lemmatize verb if possible
new_sent.append(
word["lemma"] if word["lemma"] is not None else word["text"])
# Marker hopping logic
insert_index = len(new_sent)-1
skipped_words = 0
while skipped_words < num_hops and insert_index > 0:
# Handle edge case when punctuation (or sequence of
# punctuation) begin the sentence
if (not any([c.isalnum() for c in
"".join(new_sent[:insert_index])])):
break
# Yj: 如果字符串中不存在任何字母或数字字符(即都是标点、空格等)
# Count word as skipped if it is not a special token
if (new_sent[insert_index] not in PART_TOKENS) and \
(not set(new_sent[insert_index]).issubset(PUNCT_TOKENS)):
skipped_words += 1
insert_index -= 1
# Handle edge case when insert index is punctuation (and this is not
# sentence-initial punctuation)
if any([c.isalnum() for c in
"".join(new_sent[:insert_index])]):
while insert_index != 0 and (new_sent[insert_index] in PART_TOKENS
or set(new_sent[insert_index]).issubset(PUNCT_TOKENS)):
insert_index -= 1
# Handle edge case when token before insert index is part/aux token
if insert_index != 0 and new_sent[insert_index-1] in PART_TOKENS:
insert_index -= 1
# Log if this sentence had all full hops
hop_completed.append(skipped_words == num_hops)
# Use correct marker for singular vs. plural
if "Number=Sing" in word["feats"]:
new_sent.insert(insert_index, marker_sg)
elif "Number=Plur" in word["feats"]:
new_sent.insert(insert_index, marker_pl)
else:
raise Exception(
"Number not in verb features\n" + sent["sent_text"])
else:
new_sent.append(word["text"])
new_sent.reverse()
sent_string = " ".join(merge_part_tokens(new_sent))
tokens = qwen_hop_tokenizer.encode(sent_string)
return tokens, all(hop_completed) and len(hop_completed) > 0
def __perturb_hop_tokens(sent, num_hops):
word_annotations = sent["word_annotations"].copy()
word_annotations.reverse()
new_sent = deque()
tokens = []
for word in word_annotations:
# Identify 3.pres verbs
if __affect_hop_word(word):
# Lemmatize verb if possible
lemma = word["lemma"] if word["lemma"] is not None else word["text"]
if len(new_sent) > 0 and new_sent[0] in PART_TOKENS:
lemma = lemma + new_sent[0]
new_sent.popleft()
if len(new_sent) > 0:
sent_string = " ".join(merge_part_tokens(new_sent))
tokens = qwen_hop_tokenizer.encode(
" " + sent_string) + tokens
# Use correct marker for singular vs. plural
if "Number=Sing" in word["feats"]:
tokens.insert(num_hops, marker_sg_token)
elif "Number=Plur" in word["feats"]:
tokens.insert(num_hops, marker_pl_token)
else:
raise Exception(
"Number not in verb features\n" + sent["sent_text"])
new_sent = deque()
new_sent.append(lemma)
else:
new_sent.appendleft(word["text"])
if len(new_sent) > 0:
sent_string = " ".join(merge_part_tokens(new_sent))
tokens = qwen_hop_tokenizer.encode(sent_string) + tokens
return tokens
def __perturb_reverse(sent, rng, reverse, full):
# Get sentence text and GPT-2 tokens
tokens = qwen_rev_tokenizer.encode(sent["sent_text"])
# Pick random index to insert REV token
i = rng.choice(len(tokens)+1)
tokens.insert(i, marker_rev_token)
# Extract tokens before/after the marker, and reverse tokens after
tokens_before = tokens[:i+1]
tokens_after = tokens[i+1:]
if reverse:
tokens_after.reverse()
new_tokens = tokens_before + tokens_after
if full:
assert not reverse
new_tokens.reverse()
return new_tokens
def __perturb_shuffle_deterministic(sent, seed, shuffle):
# Get sentence text and GPT-2 tokens
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
if shuffle:
default_rng(seed).shuffle(tokens)
return tokens
def __perturb_shuffle_nondeterministic(sent, rng):
# Get sentence text and GPT-2 tokens
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
rng.shuffle(tokens)
return tokens
def __perturb_shuffle_local(sent, seed, window=5):
# Get sentence text and GPT-2 tokens
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
# Shuffle tokens in batches of size window
shuffled_tokens = []
for i in range(0, len(tokens), window):
batch = tokens[i:i+window].copy()
default_rng(seed).shuffle(batch)
shuffled_tokens += batch
return shuffled_tokens
def __perturb_shuffle_even_odd(sent):
# Get sentence text and GPT-2 tokens
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
even = [tok for i, tok in enumerate(tokens) if i % 2 == 0]
odd = [tok for i, tok in enumerate(tokens) if i % 2 != 0]
return even + odd
##############################################################################
# AFFECT FUNCTIONS
# These functions define when a perturbation has been applied to a sentence
# not. This is used for identifying which test sentences have been
# altered to separate affected vs. unaffected senences. Affect functions are
# functions of the input sentence object and return a boolean.
##############################################################################
def affect_hop(sent):
return any([__affect_hop_word(word) for word in sent['word_annotations']]) \
and sent["constituency_parse"] is not None
def affect_reverse(sent):
return True
def affect_shuffle(sent):
return True
def affect_none(sent):
return False
##############################################################################
# FILTER FUNCTIONS
# These functions define when an affected sentence should be included in the
# final dataset. For instance, hop perturbations where the marker is placed
# at the end of the sentence should be excluded. A filter function returns
# True if an affected sentence should be included in the dataset.
##############################################################################
def filter_hop(sent):
# Assertion needed since filter function is only defined for affected
# sentences
assert (affect_hop(sent))
return check_word_hops_completed(sent, 4)
def filter_reverse(sent):
return True
def filter_shuffle(sent):
tokens = qwen_original_tokenizer.encode(sent["sent_text"])
return len(tokens) > 1 and len(tokens) <= 350
def filter_none(sent):
return False
##############################################################################
# PERTURBATION FUNCTIONS
# These functions define how a perturbation will affect a sentence. They
# take in a sentence object and an optional marker
# for verb transformations. They return a string representing the transformed
# sentence.
##############################################################################
def perturb_hop_words4(sent):
return __perturb_hop_words(sent, 4, MARKER_HOP_SING, MARKER_HOP_PLUR)
def perturb_hop_tokens4(sent):
return __perturb_hop_tokens(sent, 4)
def perturb_hop_control(sent):
return __perturb_hop_tokens(sent, 0)
def perturb_reverse(sent, rng, reverse=True, full=False):
return __perturb_reverse(sent, rng, reverse, full)
def perturb_shuffle_deterministic(sent, seed=None, shuffle=True):
return __perturb_shuffle_deterministic(sent, seed, shuffle)
def perturb_shuffle_nondeterministic(sent, rng):
return __perturb_shuffle_nondeterministic(sent, rng)
def perturb_shuffle_local(sent, seed, window):
return __perturb_shuffle_local(sent, seed, window)
def perturb_shuffle_even_odd(sent):
return __perturb_shuffle_even_odd(sent)
##############################################################################
# PERTURBATIONS
# This dict maps the name of a perturbation to its perturbation and filter
# functions. The names and functions in this dict are used throughout the
# repo.
##############################################################################
PERTURBATIONS = {
"shuffle_control": {
"perturbation_function": partial(perturb_shuffle_deterministic, seed=None, shuffle=False),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#606060",
},
"shuffle_nondeterministic": {
"perturbation_function": partial(perturb_shuffle_nondeterministic, rng=default_rng(0)),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#E8384F",
},
"shuffle_deterministic21": {
"perturbation_function": partial(perturb_shuffle_deterministic, seed=21, shuffle=True),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#FFB000",
},
"shuffle_deterministic57": {
"perturbation_function": partial(perturb_shuffle_deterministic, seed=57, shuffle=True),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#8db000",
},
"shuffle_deterministic84": {
"perturbation_function": partial(perturb_shuffle_deterministic, seed=84, shuffle=True),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#62BB35",
},
"shuffle_local3": {
"perturbation_function": partial(perturb_shuffle_local, seed=0, window=3),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#208EA3",
},
"shuffle_local5": {
"perturbation_function": partial(perturb_shuffle_local, seed=0, window=5),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#4178BC",
},
"shuffle_local10": {
"perturbation_function": partial(perturb_shuffle_local, seed=0, window=10),
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#AA71FF",
},
"shuffle_even_odd": {
"perturbation_function": perturb_shuffle_even_odd,
"affect_function": affect_shuffle,
"filter_function": filter_shuffle,
"qwen_tokenizer": qwen_original_tokenizer,
"color": "#E37CFF",
},
"reverse_control": {
"perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=False, full=False),
"affect_function": affect_reverse,
"filter_function": filter_reverse,
"qwen_tokenizer": qwen_rev_tokenizer,
"color": "#606060",
},
"reverse_partial": {
"perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=True, full=False),
"affect_function": affect_reverse,
"filter_function": filter_reverse,
"qwen_tokenizer": qwen_rev_tokenizer,
"color": "#E5A836",
},
"reverse_full": {
"perturbation_function": partial(perturb_reverse, rng=default_rng(21), reverse=False, full=True),
"affect_function": affect_reverse,
"filter_function": filter_reverse,
"qwen_tokenizer": qwen_rev_tokenizer,
"color": "#A348A6",
},
"hop_control": {
"perturbation_function": perturb_hop_control,
"affect_function": affect_hop,
"filter_function": filter_hop,
"qwen_tokenizer": qwen_hop_tokenizer,
"color": "#606060",
},
"hop_tokens4": {
"perturbation_function": perturb_hop_tokens4,
"affect_function": affect_hop,
"filter_function": filter_hop,
"qwen_tokenizer": qwen_hop_tokenizer,
"color": "#fa8128",
},
"hop_words4": {
"perturbation_function": perturb_hop_words4,
"affect_function": affect_hop,
"filter_function": filter_hop,
"qwen_tokenizer": qwen_hop_tokenizer,
"color": "#03a0ff",
},
}