|
|
|
import torch |
|
import torch.distributed as dist |
|
import sys |
|
sys.path.append("..") |
|
|
|
import pytest |
|
import glob |
|
import tqdm |
|
import os |
|
import argparse |
|
import stanza |
|
import json |
|
from transformers import AutoTokenizer |
|
|
|
def chunk_text(text, tokenizer, max_length=512): |
|
tokens = tokenizer(text)['input_ids'] |
|
chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)] |
|
return [tokenizer.decode(chunk, skip_special_tokens=True) for chunk in chunks] |
|
|
|
def init_distributed_mode(): |
|
dist.init_process_group(backend='nccl') |
|
rank = dist.get_rank() |
|
torch.cuda.set_device(rank) |
|
return rank |
|
|
|
def process_single_file(file, rank, tokenizer, nlp1, nlp2): |
|
print(f"GPU {rank}: Processing {file.name}") |
|
lines = file.readlines() |
|
|
|
|
|
num_lines = len(lines) |
|
num_gpus = dist.get_world_size() |
|
|
|
lines_per_gpu = (num_lines + num_gpus - 1) // num_gpus |
|
start_idx = rank * lines_per_gpu |
|
end_idx = min(start_idx + lines_per_gpu, num_lines) |
|
gpu_lines = lines[start_idx:end_idx] |
|
|
|
line_batches = [gpu_lines[i:i + BATCH_SIZE] for i in range(0, len(gpu_lines), BATCH_SIZE)] |
|
text_batches = [" ".join(l) for l in line_batches] |
|
|
|
line_annotations = [] |
|
for text in tqdm.tqdm(text_batches, desc=f"GPU {rank}"): |
|
text_chunks = chunk_text(text, tokenizer) |
|
for chunk in text_chunks: |
|
doc = nlp1(chunk) |
|
sent_annotations = [] |
|
for sent in doc.sentences: |
|
word_annotations = [] |
|
for token, word in zip(sent.tokens, sent.words): |
|
wa = { |
|
'id': word.id, |
|
'text': word.text, |
|
'lemma': word.lemma, |
|
'upos': word.upos, |
|
'xpos': word.xpos, |
|
'feats': word.feats, |
|
'start_char': token.start_char, |
|
'end_char': token.end_char |
|
} |
|
word_annotations.append(wa) |
|
|
|
sa = { |
|
'sent_text': sent.text, |
|
'word_annotations': word_annotations |
|
} |
|
if args.parse: |
|
sa['constituency_parse'] = __get_constituency_parse(sent, nlp2) |
|
|
|
sent_annotations.append(sa) |
|
line_annotations.append({'sent_annotations': sent_annotations}) |
|
|
|
|
|
temp_filename = os.path.splitext(file.name)[0] + f'_rank{rank}.json' |
|
with open(temp_filename, "w") as outfile: |
|
json.dump(line_annotations, outfile, indent=4) |
|
|
|
return temp_filename |
|
|
|
def merge_files(temp_files, output_file): |
|
merged_data = [] |
|
for file in temp_files: |
|
with open(file, "r") as infile: |
|
data = json.load(infile) |
|
merged_data.extend(data) |
|
os.remove(file) |
|
|
|
with open(output_file, "w") as outfile: |
|
json.dump(merged_data, outfile, indent=4) |
|
|
|
def run_on_gpu(rank, args, tokenizer, nlp1, nlp2): |
|
print(f"Running on Rank {rank}, using GPU {torch.cuda.current_device()}") |
|
|
|
temp_files = [] |
|
if len(args.path) == 1: |
|
temp_files.append(process_single_file(args.path[0], rank, tokenizer, nlp1, nlp2)) |
|
dist.barrier() |
|
if rank == 0: |
|
|
|
final_output = os.path.splitext(args.path[0].name)[0] + '_merged.json' |
|
merge_files(temp_files, final_output) |
|
else: |
|
files_per_gpu = len(args.path) // dist.get_world_size() |
|
start_idx = rank * files_per_gpu |
|
end_idx = start_idx + files_per_gpu if rank != dist.get_world_size() - 1 else len(args.path) |
|
gpu_files = args.path[start_idx:end_idx] |
|
|
|
for file in gpu_files: |
|
process_single_file(file, rank, tokenizer, nlp1, nlp2) |
|
|
|
def __get_constituency_parse(sent, nlp): |
|
try: |
|
parse_doc = nlp(sent.text) |
|
except: |
|
return None |
|
parse_trees = [str(sent.constituency) for sent in parse_doc.sentences] |
|
return "(ROOT " + " ".join(parse_trees) + ")" |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
prog='Tag BabyLM dataset', |
|
description='Tag BabyLM dataset using Stanza') |
|
parser.add_argument('path', type=argparse.FileType('r'), |
|
nargs='+', help="Path to file(s)") |
|
parser.add_argument('-p', '--parse', action='store_true', |
|
help="Include constituency parse") |
|
args = parser.parse_args() |
|
|
|
rank = init_distributed_mode() |
|
|
|
BATCH_SIZE = 1000 |
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
nlp1 = stanza.Pipeline(lang='en', processors='tokenize,pos,lemma', package="default_accurate", use_gpu=True) |
|
|
|
nlp2 = None |
|
if args.parse: |
|
nlp2 = stanza.Pipeline(lang='en', processors='tokenize,pos,constituency', package="default_accurate", use_gpu=True) |
|
|
|
run_on_gpu(rank, args, tokenizer, nlp1, nlp2) |