import sys import torch sys.path.append("..") import os from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling from utils_llama import PERTURBATIONS, BABYLM_SPLITS, BABYLM_DATA_PATH, \ GENRES, MARKER_TOKEN_IDS, marker_sg_token, marker_pl_token, marker_rev_token, write_file import argparse # import wandb # Setup for Weights & Biases # wandb.init(project="kallini", group="babylm-perturbation-experiments", name=run_id) if __name__ == "__main__": # === CONFIGURATION SETTINGS === parser = argparse.ArgumentParser(description="Training configuration.") parser.add_argument('--perturbation', type=str, default='hop_tokens4', help='Type of perturbation to use.') parser.add_argument('--train_set', type=str, default='10M', help='Dataset size for training.') parser.add_argument('--batch_size', type=int, default=4, help='Batch size for training.') parser.add_argument('--epoch', type=int, default=20, help='train epoch') parser.add_argument('--seed', type=int, default=0, help='Random seed.') args = parser.parse_args() # no_pos_encodings_underscore = "" # Ex: "_nopos" if needed ckpt_path = "./checkpoints" # effective_bsz = 512 model_name = "meta-llama/Llama-3.2-3B" model_save_name = "Llama-3.2-3B" # === FILE PATHS BASED ON CONFIGURATION === run_id = f"babylm_{args.perturbation}_{args.train_set}_seed{args.seed}" cache_dir = os.path.join(ckpt_path, f"{model_save_name}", run_id, "artifacts") run_dir = os.path.join(ckpt_path, f"{model_save_name}", run_id, "runs") os.makedirs(cache_dir, exist_ok=True) os.makedirs(run_dir, exist_ok=True) # === DATASET LOADING === dataset_name = f"babylm_{args.perturbation}_{args.train_set}_seed{args.seed}" dataset = load_dataset('babylm_dataset_llama.py', name=dataset_name, trust_remote_code=True) train_dataset = dataset['train'] # === TOKENIZER & MODEL LOADING === # model_name = f"gpt2{'' if no_pos_encodings_underscore == '' else '-no-pos'}-small-{perturbation}-{paren_model}" # tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir) tokenizer = PERTURBATIONS[args.perturbation]['llama_tokenizer'] model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", cache_dir=cache_dir) # print("model:", model) # === TOKENIZATION === def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True, max_length=1024) tokenized_train = train_dataset.map(tokenize_function, batched=True, remove_columns=["text"]) # === DATA COLLATOR === data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) # === TRAINING ARGUMENTS === training_args = TrainingArguments( output_dir=run_dir, # evaluation_strategy="steps", evaluation_strategy="no", # per_device_train_batch_size=int(effective_bsz / 1), # Assuming 1 GPU for this example per_device_train_batch_size=args.batch_size, # Assuming 1 GPU for this example logging_dir='./logs', logging_steps=1000, save_steps=1000, # save_total_limit=5, learning_rate=2e-5, num_train_epochs=args.epoch, seed=args.seed, # load_best_model_at_end=True, gradient_accumulation_steps=1, # help reduce gpu memory fp16 = True, # Enable mixed precision training report_to="none", ) # === TRAINER === trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_train, tokenizer=tokenizer, data_collator=data_collator ) # === TRAIN MODEL === trainer.train() # End logging # wandb.finish()