--- tags: - generated_from_trainer metrics: - wer model-index: - name: testing_pretrained_niger_mali results: [] --- # testing_pretrained_niger_mali This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9245 - Wer: 0.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 350 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.427 | 35.29 | 300 | 2.9588 | 1.0 | | 2.8653 | 70.59 | 600 | 2.7466 | 1.0 | | 2.7675 | 105.88 | 900 | 2.7207 | 1.0 | | 2.6674 | 141.18 | 1200 | 2.2285 | 1.0 | | 1.7813 | 176.47 | 1500 | 1.5717 | 0.8852 | | 1.0447 | 211.76 | 1800 | 1.7009 | 0.8778 | | 0.8167 | 247.06 | 2100 | 1.8010 | 0.8815 | | 0.7059 | 282.35 | 2400 | 1.8748 | 0.8815 | | 0.6572 | 317.65 | 2700 | 1.9245 | 0.8889 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3