Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,136 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- ylecun/mnist
|
5 |
+
- uoft-cs/cifar10
|
6 |
+
- uoft-cs/cifar100
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
pipeline_tag: text-to-image
|
12 |
+
tags:
|
13 |
+
- diffusion
|
14 |
+
- unet
|
15 |
+
- res
|
16 |
+
---
|
17 |
+
|
18 |
+
<a id="readme-top"></a>
|
19 |
+
<!-- PROJECT SHIELDS -->
|
20 |
+
|
21 |
+
<!-- PROJECT LOGO -->
|
22 |
+
<br />
|
23 |
+
<div align="center">
|
24 |
+
<a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion">
|
25 |
+
|
26 |
+
</a>
|
27 |
+
|
28 |
+
<h3 align="center">Diffusion Model Sampler</h3>
|
29 |
+
|
30 |
+
<p align="center">
|
31 |
+
An implementation of a diffusion model sampler using a UNet transformer to generate handwritten digit samples.
|
32 |
+
<br />
|
33 |
+
<a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion"><strong>Explore the docs »</strong></a>
|
34 |
+
<br />
|
35 |
+
<br />
|
36 |
+
<a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion">View Demo</a>
|
37 |
+
·
|
38 |
+
<a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion/issues/new?labels=bug&template=bug-report---.md">Report Bug</a>
|
39 |
+
·
|
40 |
+
<a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion/issues/new?labels=enhancement&template=feature-request---.md">Request Feature</a>
|
41 |
+
</p>
|
42 |
+
</div>
|
43 |
+
|
44 |
+
<!-- TABLE OF CONTENTS -->
|
45 |
+
<details>
|
46 |
+
<summary>Table of Contents</summary>
|
47 |
+
<ol>
|
48 |
+
<li>
|
49 |
+
<a href="#about-the-project">About The Project</a>
|
50 |
+
<ul>
|
51 |
+
<li><a href="#built-with">Built With</a></li>
|
52 |
+
</ul>
|
53 |
+
</li>
|
54 |
+
<li>
|
55 |
+
<a href="#getting-started">Getting Started</a>
|
56 |
+
<ul>
|
57 |
+
<li><a href="#prerequisites">Prerequisites</a></li>
|
58 |
+
<li><a href="#installation">Installation</a></li>
|
59 |
+
</ul>
|
60 |
+
</li>
|
61 |
+
<li><a href="#usage">Usage</a></li>
|
62 |
+
<li><a href="#results">Results</a></li>
|
63 |
+
<li><a href="#roadmap">Roadmap</a></li>
|
64 |
+
<li><a href="#contributing">Contributing</a></li>
|
65 |
+
<li><a href="#license">License</a></li>
|
66 |
+
<li><a href="#contact">Contact</a></li>
|
67 |
+
<li><a href="#acknowledgments">Acknowledgments</a></li>
|
68 |
+
</ol>
|
69 |
+
</details>
|
70 |
+
|
71 |
+
<!-- ABOUT THE PROJECT -->
|
72 |
+
## About The Project
|
73 |
+
|
74 |
+
Diffusion models have shown great promise in generating high-quality samples in various domains. In this project, we utilize a UNet transformer-based diffusion model to generate samples of handwritten digits. The process involves:
|
75 |
+
1. Setting up the model and loading pre-trained weights.
|
76 |
+
2. Generating samples for each digit.
|
77 |
+
3. Creating a GIF to visualize the generated samples.
|
78 |
+
|
79 |
+
<div align="center">
|
80 |
+
<img src="./digit_samples.gif" alt="MNIST GIF" width="200" height="200" style="display:inline-block;">
|
81 |
+
<img src="./digit_samples_cifar.gif" alt="CIFAR-10 GIF" width="200" height="200" style="display:inline-block;">
|
82 |
+
</div>
|
83 |
+
|
84 |
+
<p align="right">(<a href="#readme-top">back to top</a>)</p>
|
85 |
+
|
86 |
+
### Built With
|
87 |
+
|
88 |
+
#### AI and Machine Learning Libraries
|
89 |
+
|
90 |
+
<div align="center">
|
91 |
+
<img src="https://icon.icepanel.io/Technology/svg/TensorFlow.svg" alt="Python" width="40" height="40" style="display:inline-block;">
|
92 |
+
<img src="https://icon.icepanel.io/Technology/svg/PyTorch.svg" alt="PyTorch" width="40" height="40" style="display:inline-block;">
|
93 |
+
<img src="https://icon.icepanel.io/Technology/svg/NumPy.svg" alt="NumPy" width="40" height="40" style="display:inline-block;">
|
94 |
+
<img src="https://icon.icepanel.io/Technology/svg/Matplotlib.svg" alt="Matplotlib" width="40" height="40" style="display:inline-block;">
|
95 |
+
<img src="https://img.shields.io/badge/Pillow-5A9?style=for-the-badge&logo=pillow&logoColor=white" alt="Pillow" width="40" height="40" style="display:inline-block;">
|
96 |
+
</div>
|
97 |
+
|
98 |
+
<p align="right">(<a href="#readme-top">back to top</a>)</p>
|
99 |
+
|
100 |
+
<!-- GETTING STARTED -->
|
101 |
+
## Getting Started
|
102 |
+
|
103 |
+
To get a local copy up and running follow these simple example steps.
|
104 |
+
|
105 |
+
### Prerequisites
|
106 |
+
|
107 |
+
Ensure you have the following prerequisites installed:
|
108 |
+
* Python 3.8 or higher
|
109 |
+
* CUDA-enabled GPU (optional but recommended)
|
110 |
+
* The following Python libraries:
|
111 |
+
- torch
|
112 |
+
- torchvision
|
113 |
+
- numpy
|
114 |
+
- Pillow
|
115 |
+
- matplotlib
|
116 |
+
|
117 |
+
### Installation
|
118 |
+
|
119 |
+
1. Clone the repository:
|
120 |
+
```sh
|
121 |
+
git clone https://github.com/Yavuzhan-Baykara/Stable-Diffusion.git
|
122 |
+
cd Stable-Diffusion
|
123 |
+
```
|
124 |
+
2. Install the required Python libraries:
|
125 |
+
```sh
|
126 |
+
pip install torch torchvision numpy Pillow matplotlib
|
127 |
+
```
|
128 |
+
|
129 |
+
<p align="right">(<a href="#readme-top">back to top</a>)</p>
|
130 |
+
|
131 |
+
<!-- USAGE -->
|
132 |
+
## Usage
|
133 |
+
|
134 |
+
To train the UNet transformer with different datasets and samplers, use the following command:
|
135 |
+
```sh
|
136 |
+
python train.py <dataset> <sampler> <epoch> <batch_size>
|