Yavzan commited on
Commit
fae38dc
1 Parent(s): 5a67d0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -3
README.md CHANGED
@@ -1,3 +1,136 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - ylecun/mnist
5
+ - uoft-cs/cifar10
6
+ - uoft-cs/cifar100
7
+ language:
8
+ - en
9
+ metrics:
10
+ - accuracy
11
+ pipeline_tag: text-to-image
12
+ tags:
13
+ - diffusion
14
+ - unet
15
+ - res
16
+ ---
17
+
18
+ <a id="readme-top"></a>
19
+ <!-- PROJECT SHIELDS -->
20
+
21
+ <!-- PROJECT LOGO -->
22
+ <br />
23
+ <div align="center">
24
+ <a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion">
25
+
26
+ </a>
27
+
28
+ <h3 align="center">Diffusion Model Sampler</h3>
29
+
30
+ <p align="center">
31
+ An implementation of a diffusion model sampler using a UNet transformer to generate handwritten digit samples.
32
+ <br />
33
+ <a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion"><strong>Explore the docs »</strong></a>
34
+ <br />
35
+ <br />
36
+ <a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion">View Demo</a>
37
+ ·
38
+ <a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion/issues/new?labels=bug&template=bug-report---.md">Report Bug</a>
39
+ ·
40
+ <a href="https://github.com/Yavuzhan-Baykara/Stable-Diffusion/issues/new?labels=enhancement&template=feature-request---.md">Request Feature</a>
41
+ </p>
42
+ </div>
43
+
44
+ <!-- TABLE OF CONTENTS -->
45
+ <details>
46
+ <summary>Table of Contents</summary>
47
+ <ol>
48
+ <li>
49
+ <a href="#about-the-project">About The Project</a>
50
+ <ul>
51
+ <li><a href="#built-with">Built With</a></li>
52
+ </ul>
53
+ </li>
54
+ <li>
55
+ <a href="#getting-started">Getting Started</a>
56
+ <ul>
57
+ <li><a href="#prerequisites">Prerequisites</a></li>
58
+ <li><a href="#installation">Installation</a></li>
59
+ </ul>
60
+ </li>
61
+ <li><a href="#usage">Usage</a></li>
62
+ <li><a href="#results">Results</a></li>
63
+ <li><a href="#roadmap">Roadmap</a></li>
64
+ <li><a href="#contributing">Contributing</a></li>
65
+ <li><a href="#license">License</a></li>
66
+ <li><a href="#contact">Contact</a></li>
67
+ <li><a href="#acknowledgments">Acknowledgments</a></li>
68
+ </ol>
69
+ </details>
70
+
71
+ <!-- ABOUT THE PROJECT -->
72
+ ## About The Project
73
+
74
+ Diffusion models have shown great promise in generating high-quality samples in various domains. In this project, we utilize a UNet transformer-based diffusion model to generate samples of handwritten digits. The process involves:
75
+ 1. Setting up the model and loading pre-trained weights.
76
+ 2. Generating samples for each digit.
77
+ 3. Creating a GIF to visualize the generated samples.
78
+
79
+ <div align="center">
80
+ <img src="./digit_samples.gif" alt="MNIST GIF" width="200" height="200" style="display:inline-block;">
81
+ <img src="./digit_samples_cifar.gif" alt="CIFAR-10 GIF" width="200" height="200" style="display:inline-block;">
82
+ </div>
83
+
84
+ <p align="right">(<a href="#readme-top">back to top</a>)</p>
85
+
86
+ ### Built With
87
+
88
+ #### AI and Machine Learning Libraries
89
+
90
+ <div align="center">
91
+ <img src="https://icon.icepanel.io/Technology/svg/TensorFlow.svg" alt="Python" width="40" height="40" style="display:inline-block;">
92
+ <img src="https://icon.icepanel.io/Technology/svg/PyTorch.svg" alt="PyTorch" width="40" height="40" style="display:inline-block;">
93
+ <img src="https://icon.icepanel.io/Technology/svg/NumPy.svg" alt="NumPy" width="40" height="40" style="display:inline-block;">
94
+ <img src="https://icon.icepanel.io/Technology/svg/Matplotlib.svg" alt="Matplotlib" width="40" height="40" style="display:inline-block;">
95
+ <img src="https://img.shields.io/badge/Pillow-5A9?style=for-the-badge&logo=pillow&logoColor=white" alt="Pillow" width="40" height="40" style="display:inline-block;">
96
+ </div>
97
+
98
+ <p align="right">(<a href="#readme-top">back to top</a>)</p>
99
+
100
+ <!-- GETTING STARTED -->
101
+ ## Getting Started
102
+
103
+ To get a local copy up and running follow these simple example steps.
104
+
105
+ ### Prerequisites
106
+
107
+ Ensure you have the following prerequisites installed:
108
+ * Python 3.8 or higher
109
+ * CUDA-enabled GPU (optional but recommended)
110
+ * The following Python libraries:
111
+ - torch
112
+ - torchvision
113
+ - numpy
114
+ - Pillow
115
+ - matplotlib
116
+
117
+ ### Installation
118
+
119
+ 1. Clone the repository:
120
+ ```sh
121
+ git clone https://github.com/Yavuzhan-Baykara/Stable-Diffusion.git
122
+ cd Stable-Diffusion
123
+ ```
124
+ 2. Install the required Python libraries:
125
+ ```sh
126
+ pip install torch torchvision numpy Pillow matplotlib
127
+ ```
128
+
129
+ <p align="right">(<a href="#readme-top">back to top</a>)</p>
130
+
131
+ <!-- USAGE -->
132
+ ## Usage
133
+
134
+ To train the UNet transformer with different datasets and samplers, use the following command:
135
+ ```sh
136
+ python train.py <dataset> <sampler> <epoch> <batch_size>