File size: 5,527 Bytes
570fea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/trl/trainer/ppo_config.py:141: UserWarning: The `optimize_cuda_cache` arguement will be deprecated soon, please use `optimize_device_cache` instead.
  warnings.warn(
[INFO|tokenization_utils_base.py:2024] 2023-12-22 17:17:06,207 >> loading file vocab.json
[INFO|tokenization_utils_base.py:2024] 2023-12-22 17:17:06,207 >> loading file merges.txt
[INFO|tokenization_utils_base.py:2024] 2023-12-22 17:17:06,207 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2024] 2023-12-22 17:17:06,207 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2024] 2023-12-22 17:17:06,207 >> loading file tokenizer_config.json
[INFO|tokenization_utils_base.py:2024] 2023-12-22 17:17:06,207 >> loading file tokenizer.json
[WARNING|logging.py:314] 2023-12-22 17:17:06,301 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[INFO|configuration_utils.py:737] 2023-12-22 17:17:06,302 >> loading configuration file ./models/phi-2-sft-alpaca_gpt4_en-ep1/config.json
[INFO|configuration_utils.py:737] 2023-12-22 17:17:06,314 >> loading configuration file ./models/phi-2-sft-alpaca_gpt4_en-ep1/config.json
[INFO|configuration_utils.py:802] 2023-12-22 17:17:06,315 >> Model config PhiConfig {
  "_name_or_path": "./models/phi-2-sft-alpaca_gpt4_en-ep1",
  "activation_function": "gelu_new",
  "architectures": [
    "PhiForCausalLM"
  ],
  "attn_pdrop": 0.0,
  "auto_map": {
    "AutoConfig": "configuration_phi.PhiConfig",
    "AutoModel": "modeling_phi.PhiForCausalLM",
    "AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
  },
  "embd_pdrop": 0.0,
  "flash_attn": false,
  "flash_rotary": false,
  "fused_dense": false,
  "img_processor": null,
  "initializer_range": 0.02,
  "layer_norm_epsilon": 1e-05,
  "model_type": "phi-msft",
  "n_embd": 2560,
  "n_head": 32,
  "n_head_kv": null,
  "n_inner": null,
  "n_layer": 32,
  "n_positions": 2048,
  "resid_pdrop": 0.1,
  "rotary_dim": 32,
  "tie_word_embeddings": false,
  "torch_dtype": "float16",
  "transformers_version": "4.36.2",
  "use_cache": true,
  "vocab_size": 51200
}

[INFO|modeling_utils.py:3341] 2023-12-22 17:17:06,553 >> loading weights file ./models/phi-2-sft-alpaca_gpt4_en-ep1/model.safetensors.index.json
[INFO|modeling_utils.py:1341] 2023-12-22 17:17:06,560 >> Instantiating PhiForCausalLM model under default dtype torch.float16.
[INFO|configuration_utils.py:826] 2023-12-22 17:17:06,561 >> Generate config GenerationConfig {}

[INFO|configuration_utils.py:826] 2023-12-22 17:17:06,562 >> Generate config GenerationConfig {}


Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards:  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 1/2 [00:00<00:00,  5.06it/s]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00,  5.58it/s]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00,  5.49it/s]
[INFO|modeling_utils.py:4185] 2023-12-22 17:17:07,056 >> All model checkpoint weights were used when initializing PhiForCausalLM.

[INFO|modeling_utils.py:4193] 2023-12-22 17:17:07,056 >> All the weights of PhiForCausalLM were initialized from the model checkpoint at ./models/phi-2-sft-alpaca_gpt4_en-ep1.
If your task is similar to the task the model of the checkpoint was trained on, you can already use PhiForCausalLM for predictions without further training.
[INFO|configuration_utils.py:779] 2023-12-22 17:17:07,059 >> loading configuration file ./models/phi-2-sft-alpaca_gpt4_en-ep1/generation_config.json
[INFO|configuration_utils.py:826] 2023-12-22 17:17:07,059 >> Generate config GenerationConfig {}

12/22/2023 17:17:07 - INFO - llmtuner.model.adapter - Fine-tuning method: LoRA
12/22/2023 17:17:08 - INFO - llmtuner.model.adapter - Merged 1 adapter(s).
12/22/2023 17:17:08 - INFO - llmtuner.model.adapter - Loaded adapter(s): ./models/dpo/phi-2-sft-alpaca_gpt4_en-ep1-dpo-comparison_gpt4_en-ep1-lora
12/22/2023 17:17:08 - INFO - llmtuner.model.loader - trainable params: 0 || all params: 2779683840 || trainable%: 0.0000
12/22/2023 17:17:08 - INFO - llmtuner.model.loader - This IS expected that the trainable params is 0 if you are using model for inference only.
[INFO|configuration_utils.py:483] 2023-12-22 17:17:08,317 >> Configuration saved in ./models/export/phi-2-sft-alpaca_gpt4_en-ep1-dpo-comparison_gpt4_en-ep1/config.json
[INFO|configuration_utils.py:594] 2023-12-22 17:17:08,317 >> Configuration saved in ./models/export/phi-2-sft-alpaca_gpt4_en-ep1-dpo-comparison_gpt4_en-ep1/generation_config.json
[INFO|modeling_utils.py:2390] 2023-12-22 17:17:15,004 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./models/export/phi-2-sft-alpaca_gpt4_en-ep1-dpo-comparison_gpt4_en-ep1/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2432] 2023-12-22 17:17:15,005 >> tokenizer config file saved in ./models/export/phi-2-sft-alpaca_gpt4_en-ep1-dpo-comparison_gpt4_en-ep1/tokenizer_config.json
[INFO|tokenization_utils_base.py:2441] 2023-12-22 17:17:15,006 >> Special tokens file saved in ./models/export/phi-2-sft-alpaca_gpt4_en-ep1-dpo-comparison_gpt4_en-ep1/special_tokens_map.json
[INFO|tokenization_utils_base.py:2492] 2023-12-22 17:17:15,006 >> added tokens file saved in ./models/export/phi-2-sft-alpaca_gpt4_en-ep1-dpo-comparison_gpt4_en-ep1/added_tokens.json