designvlm / modeling_internlm_xcomposer2.py
Yosemat's picture
Upload folder using huggingface_hub
fd8a4dd verified
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch InternLMXComposer2 model."""
import copy
import os
import random
import re
from pathlib import Path
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from PIL import Image
from torch import nn
from torch.nn import CrossEntropyLoss
from torchvision import transforms
from transformers import (
StoppingCriteria,
StoppingCriteriaList,
set_seed,
)
from transformers import PreTrainedTokenizer
from transformers.generation.streamers import BaseStreamer
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import (
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .build_mlp import build_vision_projector, build_vision_tower
from .ixc_utils import Image_transform, Video_transform, frame2img, get_font, load_video
from .modeling_internlm2 import (
InternLM2_INPUTS_DOCSTRING,
InternLM2Config,
InternLM2Model,
InternLM2PreTrainedModel,
)
_CONFIG_FOR_DOC = "InternLMXcomposer2Config"
FROM_TOKEN_1 = "[UNUSED_TOKEN_146]"
FROM_TOKEN_2 = "[UNUSED_TOKEN_145]"
image_extensions = {".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp"}
video_extensions = {".mp4", ".avi", ".mkv", ".mov", ".wmv"}
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop) :])).item():
return True
return False
def get_stopping_criteria(stop_words_ids):
stop_words_ids = [torch.tensor([i]).cuda() for i in stop_words_ids]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)]
)
return stopping_criteria
def set_random_seed(seed, set_cudnn=False):
"""Set the random seed for reproducibility.
Parameters:
seed (int): The seed to use for generating random numbers.
"""
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed) # For multi-GPU.
np.random.seed(seed)
random.seed(seed)
if set_cudnn and torch.backends.cudnn.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
_auto_class = "AutoModelForCausalLM"
_tied_weights_keys = ["output.weight"]
def __init__(self, config: InternLM2Config):
super().__init__(config)
self.model = InternLM2Model(config)
self.vocab_size = config.vocab_size
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.tokenizer: PreTrainedTokenizer = None # type: ignore
self.hd_num = 25
self.font = get_font()
self.max_length = config.max_length
print(f"Set max length to {self.max_length}")
# Initialize weights and apply final processing
self.post_init()
self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
self.vit = build_vision_tower()
self.vision_proj = build_vision_projector()
self.vis_processor = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, InternLM2Model):
module.gradient_checkpointing = value
if value:
self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
def get_input_embeddings(self):
return self.model.tok_embeddings
def set_input_embeddings(self, value):
self.model.tok_embeddings = value
def get_output_embeddings(self):
return self.output
def set_output_embeddings(self, new_embeddings):
self.output = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def encode_text(self, text, add_special_tokens=False):
token = self.tokenizer(
text, return_tensors="pt", add_special_tokens=add_special_tokens
).input_ids.to(self.device) # type: ignore
embs = self.model.tok_embeddings(token)
return embs
def encode_img(
self, image: torch.Tensor | str | Path, hd_num: int = 25
) -> torch.Tensor:
if image is None:
return None # UNREACHABLE # type: ignore
if isinstance(image, str):
_, ext = os.path.splitext(image)
if ext.lower() in image_extensions:
image_pil = Image.open(image)
image_pt = Image_transform(image_pil, hd_num=hd_num)
elif ext.lower() in video_extensions:
image_pil_list = load_video(image)
image_pil_list = frame2img(image_pil_list, self.font)
image_pt = Video_transform(image_pil_list, hd_num=hd_num)
else:
print("Unknow input format", image)
return None # UNREACHABLE # type: ignore
image = self.vis_processor(image_pt).unsqueeze(0).to(self.device)
else:
assert isinstance(image, torch.Tensor)
img_embeds, atts_img, img_target = self.img2emb(image)
return img_embeds
def img2emb(self, image):
img_embeds, img_split = self.vit([image], self.plora_glb_GN, self.plora_sub_GN)
if len(img_split) > 1:
print("Batch Size >1 is not supported.")
assert 0
# print (img_embeds.shape)
img_embeds = self.vision_proj(img_embeds)
atts_img = torch.ones(img_embeds.size()[:-1], dtype=torch.long).to(
img_embeds.device
)
img_target = (
torch.ones(img_embeds.size()[:2], dtype=torch.long).to(img_embeds.device)
* -100
)
return img_embeds, atts_img, img_target
def prompt_wrap(self, img_embeds, prompt):
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split("<ImageHere>")
p_before_tokens = self.tokenizer(
p_before, return_tensors="pt", add_special_tokens=True
).to(img_embeds.device) # type: ignore
p_before_embeds = self.model.tok_embeddings(p_before_tokens.input_ids).expand(
batch_size, -1, -1
)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
wrapped_atts_img = torch.ones(
wrapped_img_embeds.size()[:-1], dtype=torch.long
).to(img_embeds.device)
wrapped_target = (
torch.ones(batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
img_embeds.device
)
* -100
)
return wrapped_img_embeds, wrapped_atts_img, wrapped_target
def text2emb(self, text, add_special_tokens=False):
to_regress_tokens = self.tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_length,
add_special_tokens=add_special_tokens,
).to(self.device) # type: ignore
targets = self.mask_human_targets(to_regress_tokens.input_ids)
targets = targets.to(self.device)
return to_regress_tokens, targets
def interleav_wrap_chat(
self, query, image, history=[], meta_instruction="", max_length=16384, hd_num=24
):
self.max_length = max_length
prompt = ""
if meta_instruction:
prompt += f"""{FROM_TOKEN_1}system\n{meta_instruction}{FROM_TOKEN_2}\n"""
for record in history:
prompt += f"""{FROM_TOKEN_1}user\n{record[0]}{FROM_TOKEN_2}\n{FROM_TOKEN_1}assistant\n{record[1]}{FROM_TOKEN_2}\n"""
prompt += (
f"""{FROM_TOKEN_1}user\n{query}{FROM_TOKEN_2}\n{FROM_TOKEN_1}assistant\n"""
)
image_nums = len(image)
if image_nums == 1 and prompt.find("<ImageHere>") == -1:
# print ('auto append image at the begining')
prompt = "<ImageHere>" + prompt
parts = prompt.split("<ImageHere>")
wrap_embeds, wrap_im_mask = [], []
temp_len = 0
need_bos = True
if len(parts) != image_nums + 1:
# raise ValueError('Invalid <ImageHere> prompt format.')
print("Waring! The image number != given position!")
if image_nums > 1:
hd_num = 6
for idx, part in enumerate(parts):
if need_bos or len(part) > 0:
part_tokens = self.tokenizer(
part,
return_tensors="pt",
padding="longest",
add_special_tokens=need_bos,
).to(self.device) # type: ignore
if need_bos:
need_bos = False
part_embeds = self.model.tok_embeddings(part_tokens.input_ids)
wrap_embeds.append(part_embeds)
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
temp_len += part_embeds.shape[1]
if idx < image_nums:
img = self.encode_img(image[idx], hd_num)
wrap_embeds.append(img)
wrap_im_mask.append(torch.ones(img.shape[:2]))
temp_len += img.shape[1]
if temp_len > self.max_length:
break
wrap_embeds = torch.cat(wrap_embeds, dim=1)
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
wrap_embeds = wrap_embeds[:, : self.max_length].to(self.device)
wrap_im_mask = wrap_im_mask[:, : self.max_length].to(self.device).bool()
inputs = {"inputs_embeds": wrap_embeds}
return inputs, wrap_im_mask, temp_len
def interleav_wrap(self, img_list: list[torch.Tensor], text_list, image_nums):
temp_embeds = []
temp_im_mask = []
temp_tars = []
# encode_image
if len(img_list) > 0:
img_embeds, img_split = self.vit(
img_list, self.plora_glb_GN, self.plora_sub_GN
)
img_embeds = self.vision_proj(img_embeds)
else:
img_embeds = None
img_split = []
text_list = text_list[0]
for idx, text in enumerate(text_list):
image_num = image_nums[idx]
im_id = int(np.sum(image_nums[:idx]))
images = []
for i in range(image_nums[idx]):
st = int(np.sum(img_split[: im_id + i]))
sp = img_split[im_id + i]
temp_img = img_embeds[:, st : st + sp] # type: ignore
images.append(temp_img)
if image_num == 1 and text.find("<ImageHere>") == -1:
text = "<ImageHere>" + text
parts = text.split("<ImageHere>")
wrap_tokens, wrap_embeds, wrap_im_mask = [], [], []
temp_len = 0
need_bos = True
for idx, part in enumerate(parts):
if len(part) > 0:
part_tokens = self.tokenizer(
part,
return_tensors="pt",
padding="longest",
add_special_tokens=need_bos,
).to(self.device) # type: ignore
if need_bos:
need_bos = False
wrap_tokens.append(part_tokens.input_ids)
part_embeds = self.model.tok_embeddings(part_tokens.input_ids)
wrap_embeds.append(part_embeds)
wrap_im_mask.append(
torch.zeros(part_embeds.shape[:2]).to(self.device)
)
temp_len += part_embeds.shape[1]
if idx < image_num:
wrap_embeds.append(images[idx])
wrap_token = (
torch.ones(images[idx].shape[:2], dtype=torch.long).to(
self.device
)
* -100
)
wrap_tokens.append(wrap_token)
wrap_im_mask.append(
torch.ones(images[idx].shape[:2]).to(self.device)
)
temp_len += images[idx].shape[1]
if temp_len > self.max_length:
break
wrap_tokens = torch.cat(wrap_tokens, dim=1)
wrap_embeds = torch.cat(wrap_embeds, dim=1)
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
temp_embeds.append(wrap_embeds)
temp_im_mask.append(wrap_im_mask)
temp_tars.append(wrap_target)
temp_max_len = np.max([i.shape[1] for i in temp_embeds])
temp_max_len = min(temp_max_len, self.max_length)
final_input, final_atts, final_tars, final_mask = [], [], [], []
pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id # type: ignore
pad = pad.long().to(self.device)
pad_emb = self.model.tok_embeddings(pad)
for idx in range(len(temp_embeds)):
temp_len = temp_embeds[idx].shape[1]
if temp_len >= temp_max_len:
final_input.append(temp_embeds[idx][:, :temp_max_len])
final_atts.append(
torch.ones(1, temp_max_len).to(wrap_target.dtype).to(self.device)
)
final_tars.append(temp_tars[idx][:, :temp_max_len])
final_mask.append(temp_im_mask[idx][:, :temp_max_len])
else:
final_input.append(
torch.cat(
[
temp_embeds[idx],
pad_emb.repeat(1, temp_max_len - temp_len, 1),
],
dim=1,
)
)
final_atts.append(
torch.cat(
[
torch.ones(1, temp_len),
torch.zeros(1, temp_max_len - temp_len),
],
dim=1,
)
.to(wrap_target.dtype)
.to(self.device)
)
final_tars.append(
torch.cat(
[
temp_tars[idx],
(torch.ones(1, temp_max_len - temp_len) * -100)
.to(wrap_target.dtype)
.to(self.device),
],
dim=1,
)
)
final_mask.append(
torch.cat(
[
temp_im_mask[idx],
(torch.zeros(1, temp_max_len - temp_len))
.to(wrap_target.dtype)
.to(self.device),
],
dim=1,
)
)
inputs_embeds = torch.cat(final_input, dim=0)
attention_mask = torch.cat(final_atts, dim=0)
targets = torch.cat(final_tars, dim=0)
im_mask = torch.cat(final_mask, dim=0)
return inputs_embeds, attention_mask, targets, im_mask
def mask_human_targets(self, input_ids, pure=False):
target_batch = []
for bs in range(input_ids.shape[0]):
ids = input_ids[bs]
targets = copy.deepcopy(ids)
end_count = 0
last_eoa = 0
for i, temp_id in enumerate(ids):
if temp_id == 92542:
if end_count % 2 == 0:
targets[last_eoa : i + 6] = -100
else:
last_eoa = i + 1
end_count += 1
# # eos and following pad
elif temp_id == 2:
# loss on eos, but not on pad
targets[i + 1 :] = -100
break
# trunction, end at last question
if temp_id != 2 and end_count % 2 == 0:
# mask all after the last answer
targets[last_eoa + 1 :] = -100
target_batch.append(targets.unsqueeze(0))
target_batch = torch.cat(target_batch, dim=0)
return target_batch
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: torch.LongTensor | None = None,
attention_mask: Optional[torch.Tensor] | None = None,
position_ids: Optional[torch.LongTensor] | None = None,
past_key_values: Optional[List[torch.FloatTensor]] | None = None,
inputs_embeds: Optional[torch.FloatTensor] | None = None,
labels: Optional[torch.LongTensor] | None = None,
use_cache: Optional[bool] | None = None,
output_attentions: Optional[bool] | None = None,
output_hidden_states: Optional[bool] | None = None,
return_dict: Optional[bool] | None = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
samples = kwargs.get("samples", None)
if samples:
infer_mode = samples.get("infer_mode", "base")
if samples["data_type"][0] == "multi":
has_img = True
else:
has_img = False
# encode text
text = samples["text_input"]
# encode image
if has_img:
image = samples["image"][0]
bs = len(samples["text_input"][0])
image_nums = []
temp_image = []
for im in image:
if type(im) is list:
image_nums.append(len(im))
temp_image.extend(im)
else:
image_nums.append(1)
temp_image.append(im)
image = temp_image
assert type(image) is list and len(image_nums) == bs
to_regress_embeds, attention_mask, targets, im_mask = (
self.interleav_wrap(image, text, image_nums)
)
else:
to_regress_tokens, targets = self.text2emb(
text, add_special_tokens=True
)
to_regress_embeds = self.model.tok_embeddings(
to_regress_tokens.input_ids
)
attention_mask = to_regress_tokens.attention_mask
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
inputs_embeds = to_regress_embeds[:, : self.max_length] # type: ignore
attention_mask = attention_mask[:, : self.max_length] # type: ignore
targets = targets[:, : self.max_length]
im_mask = im_mask[:, : self.max_length].bool()
labels = targets # type: ignore
else:
im_mask = kwargs.get("im_mask", None)
infer_mode = kwargs.get("infer_mode", "base")
if im_mask is None and inputs_embeds is not None:
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device)
im_mask = im_mask.bool()
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
im_mask=im_mask,
infer_mode=infer_mode,
)
hidden_states = outputs[0]
logits = self.output(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
im_mask=None,
infer_mode="base",
**kwargs,
):
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
im_mask = im_mask
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"im_mask": im_mask,
"infer_mode": infer_mode,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
),
)
return reordered_past
def build_inputs(
self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
meta_instruction="",
):
prompt = ""
if meta_instruction:
prompt += f"""<s>{FROM_TOKEN_1}system\n{meta_instruction}{FROM_TOKEN_2}\n"""
else:
prompt += "<s>"
for record in history:
prompt += f"""{FROM_TOKEN_1}user\n{record[0]}{FROM_TOKEN_2}\n{FROM_TOKEN_1}assistant\n{record[1]}{FROM_TOKEN_2}\n"""
prompt += (
f"""{FROM_TOKEN_1}user\n{query}{FROM_TOKEN_2}\n{FROM_TOKEN_1}assistant\n"""
)
return tokenizer([prompt], return_tensors="pt")
@torch.no_grad()
def chat(
self,
tokenizer,
query: str,
image: List[Tuple[str, str]] = [],
hd_num: int = 24,
history: List[Tuple[str, str]] = [],
streamer: Optional[BaseStreamer] = None,
max_new_tokens: int = 1024,
do_sample: bool = True,
num_beams: int = 1,
temperature: float = 1.0,
top_p: float = 0.8,
repetition_penalty: float = 1.005,
infer_mode: str = "base",
use_meta: bool = False,
meta_instruction: str = "You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n"
"- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
"- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n"
"- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.",
**kwargs,
):
if not use_meta:
meta_instruction = ""
if image is None:
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
im_mask = torch.zeros(inputs["input_ids"].shape[:2]).cuda().bool()
else:
inputs, im_mask, _ = self.interleav_wrap_chat(
query,
image,
history=history,
meta_instruction=meta_instruction,
hd_num=hd_num,
)
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
# also add end-of-assistant token in eos token id to avoid unnecessary generation
eos_token_id = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids([FROM_TOKEN_2])[0],
]
outputs = self.generate(
**inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
eos_token_id=eos_token_id,
repetition_penalty=repetition_penalty,
im_mask=im_mask,
infer_mode=infer_mode,
**kwargs,
)
if image is None:
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
else:
outputs = outputs[0].cpu().tolist()
response = tokenizer.decode(outputs, skip_special_tokens=True)
response = response.split(FROM_TOKEN_2)[0]
history = history + [(query, response)]
return response, history
@torch.no_grad()
def write_artical(
self,
inst: str,
image: List[Tuple[str, str]] = [],
hd_num: int = 25,
history: List[Tuple[str, str]] = [],
streamer: Optional[BaseStreamer] = None, # type: ignore
max_new_tokens: int = 1024,
do_sample: bool = True,
num_beams: int = 1,
temperature: float = 1.0,
top_p: float = 0.8,
repetition_penalty: float = 1.005,
max_length: int = 8192,
seed: int = -1,
use_meta: bool = False,
**kwargs,
):
meta_instruction = """You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).
- InternLM-XComposer (浦语·灵笔) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
if seed != -1:
set_seed(seed)
if len(history):
print(
"Only chat function support multi round now, history will be ignored in the artical mode"
)
stop_words_ids = [92542]
stopping_criteria = get_stopping_criteria(stop_words_ids)
if not use_meta:
meta_instruction = ""
with torch.no_grad():
inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(
inst, image, meta_instruction=meta_instruction, max_length=max_length
)
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
generate = self.generate(
inputs_embeds=inputs["inputs_embeds"],
do_sample=do_sample,
num_beams=num_beams,
temperature=temperature,
repetition_penalty=repetition_penalty,
stopping_criteria=stopping_criteria,
max_new_tokens=max_length - len_input_tokens,
top_p=0.8,
top_k=40,
length_penalty=1.0,
im_mask=im_mask,
infer_mode="write",
)
response = generate[0].tolist()
response = self.tokenizer.decode(response, skip_special_tokens=True) # type: ignore
# remove eoa
response = response.replace(FROM_TOKEN_2, "")
response = response.replace(FROM_TOKEN_1, "")
return response
@torch.no_grad()
def write_webpage(
self,
inst: str,
image: List[Tuple[str, str]] = [],
max_new_tokens: int = 4800,
do_sample: bool = True,
num_beams: int = 2,
temperature: float = 1.0,
repetition_penalty: float = 3.0,
seed: int = -1,
use_meta: bool = False,
task: str = "Instruction-aware Webpage Generation",
**kwargs,
):
if seed != -1:
set_random_seed(seed, set_cudnn=True)
with torch.no_grad():
inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
generate = self.generate(
inputs_embeds=inputs["inputs_embeds"],
do_sample=do_sample,
temperature=temperature,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
im_mask=im_mask,
infer_mode="web",
)
response = generate[0].tolist()
response = self.tokenizer.decode(response, skip_special_tokens=True) # type: ignore
# remove eoa
response = response.replace(FROM_TOKEN_2, "")
out = response.replace(FROM_TOKEN_1, "")
image_type = "random"
pattern = r"""https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)"""
if image_type == "placeholder":
out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
elif image_type == "random":
out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)
with open(task.replace(" ", "_") + ".html", "w") as f:
f.write(out)
return out
@torch.no_grad()
def resume_2_webpage(
self,
inst: str,
image: List[Tuple[str, str]] = [],
max_new_tokens: int = 4800,
do_sample: bool = True,
num_beams: int = 2,
temperature: float = 1.0,
repetition_penalty: float = 3.0,
seed: int = -1,
use_meta: bool = False,
task: str = "Resume-to-Personal Page",
**kwargs,
):
if seed != -1:
set_random_seed(seed, set_cudnn=True)
try:
with open(inst) as fd:
resume = fd.read()
except Exception:
print("The input should be a resume with markdown format.")
inst = " Generate a personal page using the content in the resume:" + resume
with torch.no_grad():
inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
generate = self.generate(
inputs_embeds=inputs["inputs_embeds"],
do_sample=do_sample,
temperature=temperature,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
im_mask=im_mask,
infer_mode="web",
)
response = generate[0].tolist()
response = self.tokenizer.decode(response, skip_special_tokens=True) # type: ignore
# remove eoa
response = response.replace(FROM_TOKEN_2, "")
html = response.replace(FROM_TOKEN_1, "")
if seed != -1:
set_random_seed(seed, set_cudnn=True)
js_inst = " Generate JavaScript events for the html code:" + html
with torch.no_grad():
inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(js_inst, image)
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
generate = self.generate(
inputs_embeds=inputs["inputs_embeds"],
do_sample=do_sample,
temperature=temperature,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
im_mask=im_mask,
infer_mode="web",
)
response = generate[0].tolist()
response = self.tokenizer.decode(response, skip_special_tokens=True) # type: ignore
# remove eoa
response = response.replace(FROM_TOKEN_2, "")
js = response.replace(FROM_TOKEN_1, "")
if re.search(r"</script>", html):
js = re.findall(r"<script>([\s\S]*?)<\/script>", js)
html = re.sub(r"(</script>)", f"\n{js}\n" + r"\1", html)
elif re.search(r"</html>", html):
html = re.sub(r"(</html>)", f"\n{js}\n" + r"\1", html)
out = html
image_type = "random"
pattern = r"""https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)"""
if image_type == "placeholder":
out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
elif image_type == "random":
out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)
with open(task.replace(" ", "_") + ".html", "w") as f:
f.write(out)
return out
@torch.no_grad()
def screen_2_webpage(
self,
inst: str,
image: List[Tuple[str, str]] = [],
max_new_tokens: int = 4800,
do_sample: bool = True,
num_beams: int = 2,
temperature: float = 1.0,
repetition_penalty: float = 3.0,
seed: int = -1,
use_meta: bool = False,
task: str = "Screenshot-to-Webpage",
**kwargs,
):
if seed != -1:
set_random_seed(seed, set_cudnn=True)
if len(image) == 0:
print("No image is provided, skip")
return ""
inst = " Generate the HTML code of this web image with Tailwind CSS."
with torch.no_grad():
inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)
with torch.autocast(device_type="cuda"):
with torch.no_grad():
generate = self.generate(
inputs_embeds=inputs["inputs_embeds"],
do_sample=do_sample,
temperature=temperature,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
im_mask=im_mask,
infer_mode="web",
)
response = generate[0].tolist()
response = self.tokenizer.decode(response, skip_special_tokens=True) # type: ignore
# remove eoa
response = response.replace(FROM_TOKEN_2, "")
out = response.replace(FROM_TOKEN_1, "")
image_type = "random"
pattern = r"""https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)"""
if image_type == "placeholder":
out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
elif image_type == "random":
out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)
with open(task.replace(" ", "_") + ".html", "w") as f:
f.write(out)
return out
def add_tokens(self, new_tokens: list[str]):
self.tokenizer.add_tokens(new_tokens) # type: ignore
self.model.resize_token_embeddings(len(self.tokenizer))
self.vocab_size = len(self.tokenizer)
# self.output needs to be resized accordingly but without loosing the weight
new_output = nn.Linear(
self.model.config.hidden_size,
self.vocab_size,
bias=False,
dtype=self.output.weight.dtype,
device=self.output.weight.device,
).to(self.device)
new_output.weight.data[: self.output.weight.shape[0]] = self.output.weight.data
dummy_input_for_output = torch.zeros(
1,
1,
self.model.config.hidden_size,
device=new_output.weight.device,
dtype=new_output.weight.dtype,
).type_as(new_output.weight)
# Check if output has same behavior
dummy_old_output: torch.Tensor = self.output(dummy_input_for_output)
dummy_new_output = new_output(dummy_input_for_output)
assert dummy_old_output.allclose(
dummy_new_output[:, :, : self.output.weight.shape[0]]
)
self.output = new_output