ZeroCommand
commited on
Commit
•
433de9b
1
Parent(s):
d753141
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- README.md +12 -0
- app.py +27 -0
- app_debug.py +85 -0
- app_env.py +9 -0
- app_leaderboard.py +163 -0
- app_legacy.py +556 -0
- app_text_classification.py +258 -0
- cicd/.gitkeep +0 -0
- cicd/configs/.gitkeep +0 -0
- config.yaml +13 -0
- fetch_utils.py +32 -0
- index.html +19 -0
- io_utils.py +122 -0
- isolated_env.py +34 -0
- leaderboard.py +5 -0
- mlflow_test.py +20 -0
- output/.gitkeep +0 -0
- pipe.py +3 -0
- requirements.txt +7 -0
- run_jobs.py +186 -0
- scan_config.yaml +8 -0
- style.css +28 -0
- text_classification.py +384 -0
- text_classification_ui_helpers.py +351 -0
- tmp/.gitkeep +0 -0
- tmp/venvs/.gitkeep +0 -0
- utils.py +29 -0
- validate_queue.py +23 -0
- wordings.py +67 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Giskard Evaluator
|
3 |
+
emoji: 🐢🔍
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.7.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import atexit
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from app_debug import get_demo as get_demo_debug
|
6 |
+
from app_leaderboard import get_demo as get_demo_leaderboard
|
7 |
+
from app_text_classification import get_demo as get_demo_text_classification
|
8 |
+
from run_jobs import start_process_run_job, stop_thread
|
9 |
+
|
10 |
+
try:
|
11 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
12 |
+
with gr.Tab("Text Classification"):
|
13 |
+
get_demo_text_classification()
|
14 |
+
with gr.Tab("Leaderboard") as leaderboard_tab:
|
15 |
+
get_demo_leaderboard(leaderboard_tab)
|
16 |
+
with gr.Tab("Logs(Debug)"):
|
17 |
+
get_demo_debug()
|
18 |
+
|
19 |
+
start_process_run_job()
|
20 |
+
|
21 |
+
demo.queue(max_size=1000)
|
22 |
+
demo.launch(share=False)
|
23 |
+
atexit.register(stop_thread)
|
24 |
+
|
25 |
+
except Exception as e:
|
26 |
+
print("stop background thread: ", e)
|
27 |
+
stop_thread()
|
app_debug.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import listdir
|
2 |
+
from os.path import isfile, join
|
3 |
+
import html
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
import pipe
|
8 |
+
from io_utils import get_logs_file
|
9 |
+
|
10 |
+
LOG_PATH = "./tmp"
|
11 |
+
CONFIG_PATH = "./cicd/configs/"
|
12 |
+
MAX_FILES_NUM = 20
|
13 |
+
|
14 |
+
|
15 |
+
def get_accordions_of_files(path, files):
|
16 |
+
components = [None for _ in range(0, MAX_FILES_NUM)]
|
17 |
+
for i in range(0, len(files)):
|
18 |
+
if i >= MAX_FILES_NUM:
|
19 |
+
break
|
20 |
+
with open(join(path, files[i]), "r") as f:
|
21 |
+
components[i] = f.read()
|
22 |
+
return components
|
23 |
+
|
24 |
+
|
25 |
+
def get_accordions_of_log_files():
|
26 |
+
log_files = [
|
27 |
+
f for f in listdir(LOG_PATH) if isfile(join(LOG_PATH, f)) and f.endswith("_log")
|
28 |
+
]
|
29 |
+
return get_accordions_of_files(LOG_PATH, log_files)
|
30 |
+
|
31 |
+
|
32 |
+
def get_accordions_of_config_files():
|
33 |
+
config_files = [
|
34 |
+
f
|
35 |
+
for f in listdir(CONFIG_PATH)
|
36 |
+
if isfile(join(CONFIG_PATH, f)) and f.endswith(".yaml")
|
37 |
+
]
|
38 |
+
return get_accordions_of_files(CONFIG_PATH, config_files)
|
39 |
+
|
40 |
+
|
41 |
+
def get_config_files():
|
42 |
+
config_files = [
|
43 |
+
join(CONFIG_PATH, f)
|
44 |
+
for f in listdir(CONFIG_PATH)
|
45 |
+
if isfile(join(CONFIG_PATH, f)) and f.endswith(".yaml")
|
46 |
+
]
|
47 |
+
return config_files
|
48 |
+
|
49 |
+
|
50 |
+
def get_log_files():
|
51 |
+
return [
|
52 |
+
join(LOG_PATH, f)
|
53 |
+
for f in listdir(LOG_PATH)
|
54 |
+
if isfile(join(LOG_PATH, f)) and f.endswith("log")
|
55 |
+
]
|
56 |
+
|
57 |
+
|
58 |
+
def get_jobs_info_in_queue():
|
59 |
+
return [f"⌛️job id {html.escape(job[0])}: {html.escape(job[2])}<br/>" for job in pipe.jobs]
|
60 |
+
|
61 |
+
def get_queue_status():
|
62 |
+
if len(pipe.jobs) > 0 or pipe.current is not None:
|
63 |
+
current = pipe.current
|
64 |
+
if current is None:
|
65 |
+
current = "None"
|
66 |
+
return f'<div style="padding-top: 5%">Current job: {html.escape(current)} <br/> Jobs in queue: <br/> {"".join(get_jobs_info_in_queue())}</div>'
|
67 |
+
else:
|
68 |
+
return '<div style="padding-top: 5%">No jobs in queue, please submit an evaluation task from another tab.</div>'
|
69 |
+
|
70 |
+
|
71 |
+
def get_demo():
|
72 |
+
with gr.Row():
|
73 |
+
gr.HTML(
|
74 |
+
value=get_queue_status,
|
75 |
+
every=5,
|
76 |
+
)
|
77 |
+
with gr.Accordion(label="Log Files", open=False):
|
78 |
+
with gr.Row():
|
79 |
+
gr.Files(value=get_log_files, label="Log Files", every=10)
|
80 |
+
with gr.Row():
|
81 |
+
gr.Textbox(
|
82 |
+
value=get_logs_file, every=0.5, lines=10, visible=True, label="Current Log File"
|
83 |
+
)
|
84 |
+
with gr.Accordion(label="Config Files", open=False):
|
85 |
+
gr.Files(value=get_config_files, label="Config Files", every=10)
|
app_env.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
HF_REPO_ID = "HF_REPO_ID"
|
3 |
+
HF_SPACE_ID = "SPACE_ID"
|
4 |
+
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
5 |
+
HF_GSK_HUB_URL = "GSK_HUB_URL"
|
6 |
+
HF_GSK_HUB_PROJECT_KEY = "GSK_HUB_PROJECT_KEY"
|
7 |
+
HF_GSK_HUB_KEY = "GSK_API_KEY"
|
8 |
+
HF_GSK_HUB_HF_TOKEN = "GSK_HF_TOKEN"
|
9 |
+
HF_GSK_HUB_UNLOCK_TOKEN = "GSK_HUB_UNLOCK_TOKEN"
|
app_leaderboard.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
import datetime
|
7 |
+
|
8 |
+
from fetch_utils import (check_dataset_and_get_config,
|
9 |
+
check_dataset_and_get_split)
|
10 |
+
|
11 |
+
import leaderboard
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
global update_time
|
14 |
+
update_time = datetime.datetime.fromtimestamp(0)
|
15 |
+
|
16 |
+
def get_records_from_dataset_repo(dataset_id):
|
17 |
+
dataset_config = check_dataset_and_get_config(dataset_id)
|
18 |
+
|
19 |
+
logger.info(f"Dataset {dataset_id} has configs {dataset_config}")
|
20 |
+
dataset_split = check_dataset_and_get_split(dataset_id, dataset_config[0])
|
21 |
+
logger.info(f"Dataset {dataset_id} has splits {dataset_split}")
|
22 |
+
|
23 |
+
try:
|
24 |
+
ds = datasets.load_dataset(dataset_id, dataset_config[0])[dataset_split[0]]
|
25 |
+
df = ds.to_pandas()
|
26 |
+
return df
|
27 |
+
except Exception as e:
|
28 |
+
logger.warning(
|
29 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
30 |
+
)
|
31 |
+
return pd.DataFrame()
|
32 |
+
|
33 |
+
|
34 |
+
def get_model_ids(ds):
|
35 |
+
logging.info(f"Dataset {ds} column names: {ds['model_id']}")
|
36 |
+
models = ds["model_id"].tolist()
|
37 |
+
# return unique elements in the list model_ids
|
38 |
+
model_ids = list(set(models))
|
39 |
+
model_ids.insert(0, "Any")
|
40 |
+
return model_ids
|
41 |
+
|
42 |
+
|
43 |
+
def get_dataset_ids(ds):
|
44 |
+
logging.info(f"Dataset {ds} column names: {ds['dataset_id']}")
|
45 |
+
datasets = ds["dataset_id"].tolist()
|
46 |
+
dataset_ids = list(set(datasets))
|
47 |
+
dataset_ids.insert(0, "Any")
|
48 |
+
return dataset_ids
|
49 |
+
|
50 |
+
|
51 |
+
def get_types(ds):
|
52 |
+
# set types for each column
|
53 |
+
types = [str(t) for t in ds.dtypes.to_list()]
|
54 |
+
types = [t.replace("object", "markdown") for t in types]
|
55 |
+
types = [t.replace("float64", "number") for t in types]
|
56 |
+
types = [t.replace("int64", "number") for t in types]
|
57 |
+
return types
|
58 |
+
|
59 |
+
|
60 |
+
def get_display_df(df):
|
61 |
+
# style all elements in the model_id column
|
62 |
+
display_df = df.copy()
|
63 |
+
columns = display_df.columns.tolist()
|
64 |
+
if "model_id" in columns:
|
65 |
+
display_df["model_id"] = display_df["model_id"].apply(
|
66 |
+
lambda x: f'<a href="https://huggingface.co/{x}" target="_blank" style="color:blue">🔗{x}</a>'
|
67 |
+
)
|
68 |
+
# style all elements in the dataset_id column
|
69 |
+
if "dataset_id" in columns:
|
70 |
+
display_df["dataset_id"] = display_df["dataset_id"].apply(
|
71 |
+
lambda x: f'<a href="https://huggingface.co/datasets/{x}" target="_blank" style="color:blue">🔗{x}</a>'
|
72 |
+
)
|
73 |
+
# style all elements in the report_link column
|
74 |
+
if "report_link" in columns:
|
75 |
+
display_df["report_link"] = display_df["report_link"].apply(
|
76 |
+
lambda x: f'<a href="{x}" target="_blank" style="color:blue">🔗{x}</a>'
|
77 |
+
)
|
78 |
+
return display_df
|
79 |
+
|
80 |
+
def get_demo(leaderboard_tab):
|
81 |
+
global update_time
|
82 |
+
update_time = datetime.datetime.now()
|
83 |
+
logger.info("Loading leaderboard records")
|
84 |
+
leaderboard.records = get_records_from_dataset_repo(leaderboard.LEADERBOARD)
|
85 |
+
records = leaderboard.records
|
86 |
+
|
87 |
+
model_ids = get_model_ids(records)
|
88 |
+
dataset_ids = get_dataset_ids(records)
|
89 |
+
|
90 |
+
column_names = records.columns.tolist()
|
91 |
+
default_columns = ["model_id", "dataset_id", "total_issues", "report_link"]
|
92 |
+
default_df = records[default_columns] # extract columns selected
|
93 |
+
types = get_types(default_df)
|
94 |
+
display_df = get_display_df(default_df) # the styled dataframe to display
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
task_select = gr.Dropdown(
|
98 |
+
label="Task",
|
99 |
+
choices=["text_classification", "tabular"],
|
100 |
+
value="text_classification",
|
101 |
+
interactive=True,
|
102 |
+
)
|
103 |
+
model_select = gr.Dropdown(
|
104 |
+
label="Model id", choices=model_ids, value=model_ids[0], interactive=True
|
105 |
+
)
|
106 |
+
dataset_select = gr.Dropdown(
|
107 |
+
label="Dataset id",
|
108 |
+
choices=dataset_ids,
|
109 |
+
value=dataset_ids[0],
|
110 |
+
interactive=True,
|
111 |
+
)
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
columns_select = gr.CheckboxGroup(
|
115 |
+
label="Show columns",
|
116 |
+
choices=column_names,
|
117 |
+
value=default_columns,
|
118 |
+
interactive=True,
|
119 |
+
)
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False)
|
123 |
+
|
124 |
+
def update_leaderboard_records(model_id, dataset_id, columns, task):
|
125 |
+
global update_time
|
126 |
+
if datetime.datetime.now() - update_time < datetime.timedelta(minutes=10):
|
127 |
+
return gr.update()
|
128 |
+
update_time = datetime.datetime.now()
|
129 |
+
logger.info("Updating leaderboard records")
|
130 |
+
leaderboard.records = get_records_from_dataset_repo(leaderboard.LEADERBOARD)
|
131 |
+
return filter_table(model_id, dataset_id, columns, task)
|
132 |
+
|
133 |
+
leaderboard_tab.select(
|
134 |
+
fn=update_leaderboard_records,
|
135 |
+
inputs=[model_select, dataset_select, columns_select, task_select],
|
136 |
+
outputs=[leaderboard_df])
|
137 |
+
|
138 |
+
@gr.on(
|
139 |
+
triggers=[
|
140 |
+
model_select.change,
|
141 |
+
dataset_select.change,
|
142 |
+
columns_select.change,
|
143 |
+
task_select.change,
|
144 |
+
],
|
145 |
+
inputs=[model_select, dataset_select, columns_select, task_select],
|
146 |
+
outputs=[leaderboard_df],
|
147 |
+
)
|
148 |
+
def filter_table(model_id, dataset_id, columns, task):
|
149 |
+
logger.info("Filtering leaderboard records")
|
150 |
+
records = leaderboard.records
|
151 |
+
# filter the table based on task
|
152 |
+
df = records[(records["task"] == task)]
|
153 |
+
# filter the table based on the model_id and dataset_id
|
154 |
+
if model_id and model_id != "Any":
|
155 |
+
df = df[(df["model_id"] == model_id)]
|
156 |
+
if dataset_id and dataset_id != "Any":
|
157 |
+
df = df[(df["dataset_id"] == dataset_id)]
|
158 |
+
|
159 |
+
# filter the table based on the columns
|
160 |
+
df = df[columns]
|
161 |
+
types = get_types(df)
|
162 |
+
display_df = get_display_df(df)
|
163 |
+
return gr.update(value=display_df, datatype=types, interactive=False)
|
app_legacy.py
ADDED
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import time
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
import gradio as gr
|
9 |
+
import huggingface_hub
|
10 |
+
from transformers.pipelines import TextClassificationPipeline
|
11 |
+
|
12 |
+
from io_utils import (
|
13 |
+
convert_column_mapping_to_json,
|
14 |
+
read_inference_type,
|
15 |
+
read_scanners,
|
16 |
+
write_inference_type,
|
17 |
+
write_scanners,
|
18 |
+
)
|
19 |
+
from text_classification import (
|
20 |
+
check_column_mapping_keys_validity,
|
21 |
+
text_classification_fix_column_mapping,
|
22 |
+
)
|
23 |
+
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_MD, CONFIRM_MAPPING_DETAILS_MD
|
24 |
+
|
25 |
+
HF_REPO_ID = "HF_REPO_ID"
|
26 |
+
HF_SPACE_ID = "SPACE_ID"
|
27 |
+
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
28 |
+
|
29 |
+
|
30 |
+
def check_model(model_id):
|
31 |
+
try:
|
32 |
+
task = huggingface_hub.model_info(model_id).pipeline_tag
|
33 |
+
except Exception:
|
34 |
+
return None, None
|
35 |
+
|
36 |
+
try:
|
37 |
+
from transformers import pipeline
|
38 |
+
|
39 |
+
ppl = pipeline(task=task, model=model_id)
|
40 |
+
|
41 |
+
return model_id, ppl
|
42 |
+
except Exception as e:
|
43 |
+
return model_id, e
|
44 |
+
|
45 |
+
|
46 |
+
def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
|
47 |
+
try:
|
48 |
+
configs = datasets.get_dataset_config_names(dataset_id)
|
49 |
+
except Exception:
|
50 |
+
# Dataset may not exist
|
51 |
+
return None, dataset_config, dataset_split
|
52 |
+
|
53 |
+
if dataset_config not in configs:
|
54 |
+
# Need to choose dataset subset (config)
|
55 |
+
return dataset_id, configs, dataset_split
|
56 |
+
|
57 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)
|
58 |
+
|
59 |
+
if isinstance(ds, datasets.DatasetDict):
|
60 |
+
# Need to choose dataset split
|
61 |
+
if dataset_split not in ds.keys():
|
62 |
+
return dataset_id, None, list(ds.keys())
|
63 |
+
elif not isinstance(ds, datasets.Dataset):
|
64 |
+
# Unknown type
|
65 |
+
return dataset_id, None, None
|
66 |
+
return dataset_id, dataset_config, dataset_split
|
67 |
+
|
68 |
+
|
69 |
+
def try_validate(
|
70 |
+
m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping="{}"
|
71 |
+
):
|
72 |
+
# Validate model
|
73 |
+
if m_id is None:
|
74 |
+
gr.Warning(
|
75 |
+
"Model is not accessible. Please set your HF_TOKEN if it is a private model."
|
76 |
+
)
|
77 |
+
return (
|
78 |
+
gr.update(interactive=False), # Submit button
|
79 |
+
gr.update(visible=True), # Loading row
|
80 |
+
gr.update(visible=False), # Preview row
|
81 |
+
gr.update(visible=False), # Model prediction input
|
82 |
+
gr.update(visible=False), # Model prediction preview
|
83 |
+
gr.update(visible=False), # Label mapping preview
|
84 |
+
gr.update(visible=False), # feature mapping preview
|
85 |
+
)
|
86 |
+
if isinstance(ppl, Exception):
|
87 |
+
gr.Warning(f'Failed to load model": {ppl}')
|
88 |
+
return (
|
89 |
+
gr.update(interactive=False), # Submit button
|
90 |
+
gr.update(visible=True), # Loading row
|
91 |
+
gr.update(visible=False), # Preview row
|
92 |
+
gr.update(visible=False), # Model prediction input
|
93 |
+
gr.update(visible=False), # Model prediction preview
|
94 |
+
gr.update(visible=False), # Label mapping preview
|
95 |
+
gr.update(visible=False), # feature mapping preview
|
96 |
+
)
|
97 |
+
|
98 |
+
# Validate dataset
|
99 |
+
d_id, config, split = check_dataset(
|
100 |
+
dataset_id=dataset_id,
|
101 |
+
dataset_config=dataset_config,
|
102 |
+
dataset_split=dataset_split,
|
103 |
+
)
|
104 |
+
|
105 |
+
dataset_ok = False
|
106 |
+
if d_id is None:
|
107 |
+
gr.Warning(
|
108 |
+
f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.'
|
109 |
+
)
|
110 |
+
elif isinstance(config, list):
|
111 |
+
gr.Warning(
|
112 |
+
f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.'
|
113 |
+
)
|
114 |
+
config = gr.update(choices=config, value=config[0])
|
115 |
+
elif isinstance(split, list):
|
116 |
+
gr.Warning(
|
117 |
+
f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.'
|
118 |
+
)
|
119 |
+
split = gr.update(choices=split, value=split[0])
|
120 |
+
else:
|
121 |
+
dataset_ok = True
|
122 |
+
|
123 |
+
if not dataset_ok:
|
124 |
+
return (
|
125 |
+
gr.update(interactive=False), # Submit button
|
126 |
+
gr.update(visible=True), # Loading row
|
127 |
+
gr.update(visible=False), # Preview row
|
128 |
+
gr.update(visible=False), # Model prediction input
|
129 |
+
gr.update(visible=False), # Model prediction preview
|
130 |
+
gr.update(visible=False), # Label mapping preview
|
131 |
+
gr.update(visible=False), # feature mapping preview
|
132 |
+
)
|
133 |
+
|
134 |
+
# TODO: Validate column mapping by running once
|
135 |
+
prediction_result = None
|
136 |
+
id2label_df = None
|
137 |
+
if isinstance(ppl, TextClassificationPipeline):
|
138 |
+
try:
|
139 |
+
column_mapping = json.loads(column_mapping)
|
140 |
+
except Exception:
|
141 |
+
column_mapping = {}
|
142 |
+
|
143 |
+
(
|
144 |
+
column_mapping,
|
145 |
+
prediction_input,
|
146 |
+
prediction_result,
|
147 |
+
id2label_df,
|
148 |
+
feature_df,
|
149 |
+
) = text_classification_fix_column_mapping(
|
150 |
+
column_mapping, ppl, d_id, config, split
|
151 |
+
)
|
152 |
+
|
153 |
+
column_mapping = json.dumps(column_mapping, indent=2)
|
154 |
+
|
155 |
+
if prediction_result is None and id2label_df is not None:
|
156 |
+
gr.Warning(
|
157 |
+
'The model failed to predict with the first row in the dataset. Please provide feature mappings in "Advance" settings.'
|
158 |
+
)
|
159 |
+
return (
|
160 |
+
gr.update(interactive=False), # Submit button
|
161 |
+
gr.update(visible=False), # Loading row
|
162 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
163 |
+
gr.update(
|
164 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
165 |
+
), # Model prediction input
|
166 |
+
gr.update(visible=False), # Model prediction preview
|
167 |
+
gr.update(
|
168 |
+
value=id2label_df, visible=True, interactive=True
|
169 |
+
), # Label mapping preview
|
170 |
+
gr.update(
|
171 |
+
value=feature_df, visible=True, interactive=True
|
172 |
+
), # feature mapping preview
|
173 |
+
)
|
174 |
+
elif id2label_df is None:
|
175 |
+
gr.Warning(
|
176 |
+
'The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.'
|
177 |
+
)
|
178 |
+
return (
|
179 |
+
gr.update(interactive=False), # Submit button
|
180 |
+
gr.update(visible=False), # Loading row
|
181 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
182 |
+
gr.update(
|
183 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
184 |
+
), # Model prediction input
|
185 |
+
gr.update(
|
186 |
+
value=prediction_result, visible=True
|
187 |
+
), # Model prediction preview
|
188 |
+
gr.update(visible=True, interactive=True), # Label mapping preview
|
189 |
+
gr.update(visible=True, interactive=True), # feature mapping preview
|
190 |
+
)
|
191 |
+
|
192 |
+
gr.Info(
|
193 |
+
"Model and dataset validations passed. Your can submit the evaluation task."
|
194 |
+
)
|
195 |
+
|
196 |
+
return (
|
197 |
+
gr.update(interactive=True), # Submit button
|
198 |
+
gr.update(visible=False), # Loading row
|
199 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
200 |
+
gr.update(
|
201 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
202 |
+
), # Model prediction input
|
203 |
+
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
204 |
+
gr.update(
|
205 |
+
value=id2label_df, visible=True, interactive=True
|
206 |
+
), # Label mapping preview
|
207 |
+
gr.update(
|
208 |
+
value=feature_df, visible=True, interactive=True
|
209 |
+
), # feature mapping preview
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
def try_submit(
|
214 |
+
m_id,
|
215 |
+
d_id,
|
216 |
+
config,
|
217 |
+
split,
|
218 |
+
id2label_mapping_dataframe,
|
219 |
+
feature_mapping_dataframe,
|
220 |
+
local,
|
221 |
+
):
|
222 |
+
label_mapping = {}
|
223 |
+
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
224 |
+
label_mapping.update({str(i): label})
|
225 |
+
|
226 |
+
feature_mapping = {}
|
227 |
+
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
228 |
+
feature_mapping.update(
|
229 |
+
{feature_mapping_dataframe["Model Input Features"][i]: feature}
|
230 |
+
)
|
231 |
+
|
232 |
+
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
233 |
+
|
234 |
+
if local:
|
235 |
+
command = [
|
236 |
+
"giskard_scanner",
|
237 |
+
"--loader",
|
238 |
+
"huggingface",
|
239 |
+
"--model",
|
240 |
+
m_id,
|
241 |
+
"--dataset",
|
242 |
+
d_id,
|
243 |
+
"--dataset_config",
|
244 |
+
config,
|
245 |
+
"--dataset_split",
|
246 |
+
split,
|
247 |
+
"--hf_token",
|
248 |
+
os.environ.get(HF_WRITE_TOKEN),
|
249 |
+
"--discussion_repo",
|
250 |
+
os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
251 |
+
"--output_format",
|
252 |
+
"markdown",
|
253 |
+
"--output_portal",
|
254 |
+
"huggingface",
|
255 |
+
"--feature_mapping",
|
256 |
+
json.dumps(feature_mapping),
|
257 |
+
"--label_mapping",
|
258 |
+
json.dumps(label_mapping),
|
259 |
+
"--scan_config",
|
260 |
+
"../config.yaml",
|
261 |
+
]
|
262 |
+
|
263 |
+
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
264 |
+
start = time.time()
|
265 |
+
logging.info(f"Start local evaluation on {eval_str}")
|
266 |
+
|
267 |
+
evaluator = subprocess.Popen(
|
268 |
+
command,
|
269 |
+
stderr=subprocess.STDOUT,
|
270 |
+
)
|
271 |
+
result = evaluator.wait()
|
272 |
+
|
273 |
+
logging.info(
|
274 |
+
f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
|
275 |
+
)
|
276 |
+
|
277 |
+
gr.Info(
|
278 |
+
f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
gr.Info("TODO: Submit task to an endpoint")
|
282 |
+
|
283 |
+
return gr.update(interactive=True) # Submit button
|
284 |
+
|
285 |
+
|
286 |
+
def get_demo():
|
287 |
+
# gr.themes.Soft(
|
288 |
+
# primary_hue="green",
|
289 |
+
# )
|
290 |
+
|
291 |
+
def check_dataset_and_get_config(dataset_id):
|
292 |
+
try:
|
293 |
+
configs = datasets.get_dataset_config_names(dataset_id)
|
294 |
+
return gr.Dropdown(configs, value=configs[0], visible=True)
|
295 |
+
except Exception:
|
296 |
+
# Dataset may not exist
|
297 |
+
pass
|
298 |
+
|
299 |
+
def check_dataset_and_get_split(dataset_config, dataset_id):
|
300 |
+
try:
|
301 |
+
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
302 |
+
return gr.Dropdown(splits, value=splits[0], visible=True)
|
303 |
+
except Exception as e:
|
304 |
+
# Dataset may not exist
|
305 |
+
gr.Warning(
|
306 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
307 |
+
)
|
308 |
+
|
309 |
+
def clear_column_mapping_tables():
|
310 |
+
return [
|
311 |
+
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
312 |
+
gr.update(value=[], visible=False, interactive=True),
|
313 |
+
gr.update(value=[], visible=False, interactive=True),
|
314 |
+
]
|
315 |
+
|
316 |
+
def gate_validate_btn(
|
317 |
+
model_id,
|
318 |
+
dataset_id,
|
319 |
+
dataset_config,
|
320 |
+
dataset_split,
|
321 |
+
id2label_mapping_dataframe=None,
|
322 |
+
feature_mapping_dataframe=None,
|
323 |
+
):
|
324 |
+
column_mapping = "{}"
|
325 |
+
_, ppl = check_model(model_id=model_id)
|
326 |
+
|
327 |
+
if id2label_mapping_dataframe is not None:
|
328 |
+
labels = convert_column_mapping_to_json(
|
329 |
+
id2label_mapping_dataframe.value, label="data"
|
330 |
+
)
|
331 |
+
features = convert_column_mapping_to_json(
|
332 |
+
feature_mapping_dataframe.value, label="text"
|
333 |
+
)
|
334 |
+
column_mapping = json.dumps({**labels, **features}, indent=2)
|
335 |
+
|
336 |
+
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
337 |
+
gr.Warning("Label mapping table has invalid contents. Please check again.")
|
338 |
+
return (
|
339 |
+
gr.update(interactive=False),
|
340 |
+
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
341 |
+
gr.update(),
|
342 |
+
gr.update(),
|
343 |
+
gr.update(),
|
344 |
+
gr.update(),
|
345 |
+
gr.update(),
|
346 |
+
)
|
347 |
+
else:
|
348 |
+
if model_id and dataset_id and dataset_config and dataset_split:
|
349 |
+
return try_validate(
|
350 |
+
model_id,
|
351 |
+
ppl,
|
352 |
+
dataset_id,
|
353 |
+
dataset_config,
|
354 |
+
dataset_split,
|
355 |
+
column_mapping,
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
return (
|
359 |
+
gr.update(interactive=False),
|
360 |
+
gr.update(visible=True),
|
361 |
+
gr.update(visible=False),
|
362 |
+
gr.update(visible=False),
|
363 |
+
gr.update(visible=False),
|
364 |
+
gr.update(visible=False),
|
365 |
+
gr.update(visible=False),
|
366 |
+
)
|
367 |
+
|
368 |
+
with gr.Row():
|
369 |
+
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
370 |
+
with gr.Row():
|
371 |
+
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
372 |
+
use_inference = read_inference_type("./config.yaml") == "hf_inference_api"
|
373 |
+
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
374 |
+
|
375 |
+
with gr.Row():
|
376 |
+
selected = read_scanners("./config.yaml")
|
377 |
+
scan_config = selected + ["data_leakage"]
|
378 |
+
scanners = gr.CheckboxGroup(
|
379 |
+
choices=scan_config, value=selected, label="Scan Settings", visible=True
|
380 |
+
)
|
381 |
+
|
382 |
+
with gr.Row():
|
383 |
+
model_id_input = gr.Textbox(
|
384 |
+
label="Hugging Face model id",
|
385 |
+
placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
|
386 |
+
)
|
387 |
+
|
388 |
+
dataset_id_input = gr.Textbox(
|
389 |
+
label="Hugging Face Dataset id",
|
390 |
+
placeholder="tweet_eval",
|
391 |
+
)
|
392 |
+
with gr.Row():
|
393 |
+
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
394 |
+
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
395 |
+
|
396 |
+
with gr.Row(visible=True) as loading_row:
|
397 |
+
gr.Markdown(
|
398 |
+
"""
|
399 |
+
<p style="text-align: center;">
|
400 |
+
🚀🐢Please validate your model and dataset first...
|
401 |
+
</p>
|
402 |
+
"""
|
403 |
+
)
|
404 |
+
|
405 |
+
with gr.Row(visible=False) as preview_row:
|
406 |
+
gr.Markdown(
|
407 |
+
"""
|
408 |
+
<h1 style="text-align: center;">
|
409 |
+
Confirm Pre-processing Details
|
410 |
+
</h1>
|
411 |
+
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
|
412 |
+
"""
|
413 |
+
)
|
414 |
+
|
415 |
+
with gr.Row():
|
416 |
+
id2label_mapping_dataframe = gr.DataFrame(
|
417 |
+
label="Preview of label mapping", interactive=True, visible=False
|
418 |
+
)
|
419 |
+
feature_mapping_dataframe = gr.DataFrame(
|
420 |
+
label="Preview of feature mapping", interactive=True, visible=False
|
421 |
+
)
|
422 |
+
with gr.Row():
|
423 |
+
example_input = gr.Markdown("Sample Input: ", visible=False)
|
424 |
+
|
425 |
+
with gr.Row():
|
426 |
+
example_labels = gr.Label(label="Model Prediction Sample", visible=False)
|
427 |
+
|
428 |
+
run_btn = gr.Button(
|
429 |
+
"Get Evaluation Result",
|
430 |
+
variant="primary",
|
431 |
+
interactive=False,
|
432 |
+
size="lg",
|
433 |
+
)
|
434 |
+
|
435 |
+
model_id_input.blur(
|
436 |
+
clear_column_mapping_tables,
|
437 |
+
outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
|
438 |
+
)
|
439 |
+
|
440 |
+
dataset_id_input.blur(
|
441 |
+
check_dataset_and_get_config, dataset_id_input, dataset_config_input
|
442 |
+
)
|
443 |
+
dataset_id_input.submit(
|
444 |
+
check_dataset_and_get_config, dataset_id_input, dataset_config_input
|
445 |
+
)
|
446 |
+
|
447 |
+
dataset_config_input.change(
|
448 |
+
check_dataset_and_get_split,
|
449 |
+
inputs=[dataset_config_input, dataset_id_input],
|
450 |
+
outputs=[dataset_split_input],
|
451 |
+
)
|
452 |
+
|
453 |
+
dataset_id_input.blur(
|
454 |
+
clear_column_mapping_tables,
|
455 |
+
outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
|
456 |
+
)
|
457 |
+
# model_id_input.blur(gate_validate_btn,
|
458 |
+
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
459 |
+
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
460 |
+
# dataset_id_input.blur(gate_validate_btn,
|
461 |
+
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
462 |
+
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
463 |
+
dataset_config_input.change(
|
464 |
+
gate_validate_btn,
|
465 |
+
inputs=[
|
466 |
+
model_id_input,
|
467 |
+
dataset_id_input,
|
468 |
+
dataset_config_input,
|
469 |
+
dataset_split_input,
|
470 |
+
],
|
471 |
+
outputs=[
|
472 |
+
run_btn,
|
473 |
+
loading_row,
|
474 |
+
preview_row,
|
475 |
+
example_input,
|
476 |
+
example_labels,
|
477 |
+
id2label_mapping_dataframe,
|
478 |
+
feature_mapping_dataframe,
|
479 |
+
],
|
480 |
+
)
|
481 |
+
dataset_split_input.change(
|
482 |
+
gate_validate_btn,
|
483 |
+
inputs=[
|
484 |
+
model_id_input,
|
485 |
+
dataset_id_input,
|
486 |
+
dataset_config_input,
|
487 |
+
dataset_split_input,
|
488 |
+
],
|
489 |
+
outputs=[
|
490 |
+
run_btn,
|
491 |
+
loading_row,
|
492 |
+
preview_row,
|
493 |
+
example_input,
|
494 |
+
example_labels,
|
495 |
+
id2label_mapping_dataframe,
|
496 |
+
feature_mapping_dataframe,
|
497 |
+
],
|
498 |
+
)
|
499 |
+
id2label_mapping_dataframe.input(
|
500 |
+
gate_validate_btn,
|
501 |
+
inputs=[
|
502 |
+
model_id_input,
|
503 |
+
dataset_id_input,
|
504 |
+
dataset_config_input,
|
505 |
+
dataset_split_input,
|
506 |
+
id2label_mapping_dataframe,
|
507 |
+
feature_mapping_dataframe,
|
508 |
+
],
|
509 |
+
outputs=[
|
510 |
+
run_btn,
|
511 |
+
loading_row,
|
512 |
+
preview_row,
|
513 |
+
example_input,
|
514 |
+
example_labels,
|
515 |
+
id2label_mapping_dataframe,
|
516 |
+
feature_mapping_dataframe,
|
517 |
+
],
|
518 |
+
)
|
519 |
+
feature_mapping_dataframe.input(
|
520 |
+
gate_validate_btn,
|
521 |
+
inputs=[
|
522 |
+
model_id_input,
|
523 |
+
dataset_id_input,
|
524 |
+
dataset_config_input,
|
525 |
+
dataset_split_input,
|
526 |
+
id2label_mapping_dataframe,
|
527 |
+
feature_mapping_dataframe,
|
528 |
+
],
|
529 |
+
outputs=[
|
530 |
+
run_btn,
|
531 |
+
loading_row,
|
532 |
+
preview_row,
|
533 |
+
example_input,
|
534 |
+
example_labels,
|
535 |
+
id2label_mapping_dataframe,
|
536 |
+
feature_mapping_dataframe,
|
537 |
+
],
|
538 |
+
)
|
539 |
+
scanners.change(write_scanners, inputs=scanners)
|
540 |
+
run_inference.change(write_inference_type, inputs=[run_inference])
|
541 |
+
|
542 |
+
run_btn.click(
|
543 |
+
try_submit,
|
544 |
+
inputs=[
|
545 |
+
model_id_input,
|
546 |
+
dataset_id_input,
|
547 |
+
dataset_config_input,
|
548 |
+
dataset_split_input,
|
549 |
+
id2label_mapping_dataframe,
|
550 |
+
feature_mapping_dataframe,
|
551 |
+
run_local,
|
552 |
+
],
|
553 |
+
outputs=[
|
554 |
+
run_btn,
|
555 |
+
],
|
556 |
+
)
|
app_text_classification.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uuid
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from io_utils import get_logs_file, read_scanners, write_scanners
|
6 |
+
from text_classification_ui_helpers import (
|
7 |
+
get_related_datasets_from_leaderboard,
|
8 |
+
align_columns_and_show_prediction,
|
9 |
+
check_dataset,
|
10 |
+
precheck_model_ds_enable_example_btn,
|
11 |
+
try_submit,
|
12 |
+
write_column_mapping_to_config,
|
13 |
+
)
|
14 |
+
from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD, USE_INFERENCE_API_TIP
|
15 |
+
|
16 |
+
MAX_LABELS = 40
|
17 |
+
MAX_FEATURES = 20
|
18 |
+
|
19 |
+
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
20 |
+
CONFIG_PATH = "./config.yaml"
|
21 |
+
|
22 |
+
|
23 |
+
def get_demo():
|
24 |
+
with gr.Row():
|
25 |
+
gr.Markdown(INTRODUCTION_MD)
|
26 |
+
uid_label = gr.Textbox(
|
27 |
+
label="Evaluation ID:", value=uuid.uuid4, visible=False, interactive=False
|
28 |
+
)
|
29 |
+
with gr.Row():
|
30 |
+
model_id_input = gr.Textbox(
|
31 |
+
label="Hugging Face model id",
|
32 |
+
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
|
33 |
+
)
|
34 |
+
|
35 |
+
with gr.Column():
|
36 |
+
dataset_id_input = gr.Dropdown(
|
37 |
+
choices=[],
|
38 |
+
value="",
|
39 |
+
allow_custom_value=True,
|
40 |
+
label="Hugging Face Dataset id",
|
41 |
+
)
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False, allow_custom_value=True)
|
45 |
+
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False, allow_custom_value=True)
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
first_line_ds = gr.DataFrame(label="Dataset preview", visible=False)
|
49 |
+
with gr.Row():
|
50 |
+
loading_status = gr.HTML(visible=True)
|
51 |
+
with gr.Row():
|
52 |
+
example_btn = gr.Button(
|
53 |
+
"Validate model & dataset",
|
54 |
+
visible=True,
|
55 |
+
variant="primary",
|
56 |
+
interactive=False,
|
57 |
+
)
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
example_input = gr.HTML(visible=False)
|
61 |
+
with gr.Row():
|
62 |
+
example_prediction = gr.Label(label="Model Prediction Sample", visible=False)
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Accordion(
|
66 |
+
label="Label and Feature Mapping", visible=False, open=False
|
67 |
+
) as column_mapping_accordion:
|
68 |
+
with gr.Row():
|
69 |
+
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
70 |
+
column_mappings = []
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
gr.Markdown("# Label Mapping")
|
74 |
+
for _ in range(MAX_LABELS):
|
75 |
+
column_mappings.append(gr.Dropdown(visible=False))
|
76 |
+
with gr.Column():
|
77 |
+
gr.Markdown("# Feature Mapping")
|
78 |
+
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
79 |
+
column_mappings.append(gr.Dropdown(visible=False))
|
80 |
+
|
81 |
+
with gr.Accordion(label="Model Wrap Advance Config", open=True):
|
82 |
+
gr.HTML(USE_INFERENCE_API_TIP)
|
83 |
+
|
84 |
+
run_inference = gr.Checkbox(value=True, label="Run with Inference API")
|
85 |
+
inference_token = gr.Textbox(
|
86 |
+
placeholder="hf-xxxxxxxxxxxxxxxxxxxx",
|
87 |
+
value="",
|
88 |
+
label="HF Token for Inference API",
|
89 |
+
visible=True,
|
90 |
+
interactive=True,
|
91 |
+
)
|
92 |
+
|
93 |
+
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
94 |
+
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
|
95 |
+
|
96 |
+
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners])
|
97 |
+
def get_scanners(uid):
|
98 |
+
selected = read_scanners(uid)
|
99 |
+
# currently we remove data_leakage from the default scanners
|
100 |
+
# Reason: data_leakage barely raises any issues and takes too many requests
|
101 |
+
# when using inference API, causing rate limit error
|
102 |
+
scan_config = selected + ["data_leakage"]
|
103 |
+
return gr.update(
|
104 |
+
choices=scan_config, value=selected, label="Scan Settings", visible=True
|
105 |
+
)
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
run_btn = gr.Button(
|
109 |
+
"Get Evaluation Result",
|
110 |
+
variant="primary",
|
111 |
+
interactive=False,
|
112 |
+
size="lg",
|
113 |
+
)
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
logs = gr.Textbox(
|
117 |
+
value=get_logs_file,
|
118 |
+
label="Giskard Bot Evaluation Log:",
|
119 |
+
visible=False,
|
120 |
+
every=0.5,
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
scanners.change(write_scanners, inputs=[scanners, uid_label])
|
125 |
+
|
126 |
+
gr.on(
|
127 |
+
triggers=[model_id_input.change],
|
128 |
+
fn=get_related_datasets_from_leaderboard,
|
129 |
+
inputs=[model_id_input],
|
130 |
+
outputs=[dataset_id_input],
|
131 |
+
).then(
|
132 |
+
fn=check_dataset,
|
133 |
+
inputs=[dataset_id_input],
|
134 |
+
outputs=[dataset_config_input, dataset_split_input, loading_status]
|
135 |
+
)
|
136 |
+
|
137 |
+
gr.on(
|
138 |
+
triggers=[dataset_id_input.input],
|
139 |
+
fn=check_dataset,
|
140 |
+
inputs=[dataset_id_input],
|
141 |
+
outputs=[dataset_config_input, dataset_split_input, loading_status]
|
142 |
+
)
|
143 |
+
|
144 |
+
gr.on(
|
145 |
+
triggers=[label.change for label in column_mappings],
|
146 |
+
fn=write_column_mapping_to_config,
|
147 |
+
inputs=[
|
148 |
+
uid_label,
|
149 |
+
*column_mappings,
|
150 |
+
],
|
151 |
+
)
|
152 |
+
|
153 |
+
# label.change sometimes does not pass the changed value
|
154 |
+
gr.on(
|
155 |
+
triggers=[label.input for label in column_mappings],
|
156 |
+
fn=write_column_mapping_to_config,
|
157 |
+
inputs=[
|
158 |
+
uid_label,
|
159 |
+
*column_mappings,
|
160 |
+
],
|
161 |
+
)
|
162 |
+
|
163 |
+
gr.on(
|
164 |
+
triggers=[
|
165 |
+
model_id_input.change,
|
166 |
+
dataset_id_input.change,
|
167 |
+
dataset_config_input.change,
|
168 |
+
dataset_split_input.change,
|
169 |
+
],
|
170 |
+
fn=precheck_model_ds_enable_example_btn,
|
171 |
+
inputs=[
|
172 |
+
model_id_input,
|
173 |
+
dataset_id_input,
|
174 |
+
dataset_config_input,
|
175 |
+
dataset_split_input,
|
176 |
+
],
|
177 |
+
outputs=[example_btn, first_line_ds, loading_status],
|
178 |
+
)
|
179 |
+
|
180 |
+
gr.on(
|
181 |
+
triggers=[
|
182 |
+
example_btn.click,
|
183 |
+
],
|
184 |
+
fn=align_columns_and_show_prediction,
|
185 |
+
inputs=[
|
186 |
+
model_id_input,
|
187 |
+
dataset_id_input,
|
188 |
+
dataset_config_input,
|
189 |
+
dataset_split_input,
|
190 |
+
uid_label,
|
191 |
+
run_inference,
|
192 |
+
inference_token,
|
193 |
+
],
|
194 |
+
outputs=[
|
195 |
+
example_input,
|
196 |
+
example_prediction,
|
197 |
+
column_mapping_accordion,
|
198 |
+
run_btn,
|
199 |
+
loading_status,
|
200 |
+
*column_mappings,
|
201 |
+
],
|
202 |
+
)
|
203 |
+
|
204 |
+
gr.on(
|
205 |
+
triggers=[
|
206 |
+
run_btn.click,
|
207 |
+
],
|
208 |
+
fn=try_submit,
|
209 |
+
inputs=[
|
210 |
+
model_id_input,
|
211 |
+
dataset_id_input,
|
212 |
+
dataset_config_input,
|
213 |
+
dataset_split_input,
|
214 |
+
run_inference,
|
215 |
+
inference_token,
|
216 |
+
uid_label,
|
217 |
+
],
|
218 |
+
outputs=[run_btn, logs, uid_label],
|
219 |
+
)
|
220 |
+
|
221 |
+
def enable_run_btn(run_inference, inference_token, model_id, dataset_id, dataset_config, dataset_split):
|
222 |
+
if not run_inference or inference_token == "":
|
223 |
+
return gr.update(interactive=False)
|
224 |
+
if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "":
|
225 |
+
return gr.update(interactive=False)
|
226 |
+
return gr.update(interactive=True)
|
227 |
+
|
228 |
+
gr.on(
|
229 |
+
triggers=[
|
230 |
+
run_inference.input,
|
231 |
+
inference_token.input,
|
232 |
+
scanners.input,
|
233 |
+
],
|
234 |
+
fn=enable_run_btn,
|
235 |
+
inputs=[
|
236 |
+
run_inference,
|
237 |
+
inference_token,
|
238 |
+
model_id_input,
|
239 |
+
dataset_id_input,
|
240 |
+
dataset_config_input,
|
241 |
+
dataset_split_input
|
242 |
+
],
|
243 |
+
outputs=[run_btn],
|
244 |
+
)
|
245 |
+
|
246 |
+
gr.on(
|
247 |
+
triggers=[label.input for label in column_mappings],
|
248 |
+
fn=enable_run_btn,
|
249 |
+
inputs=[
|
250 |
+
run_inference,
|
251 |
+
inference_token,
|
252 |
+
model_id_input,
|
253 |
+
dataset_id_input,
|
254 |
+
dataset_config_input,
|
255 |
+
dataset_split_input
|
256 |
+
], # FIXME
|
257 |
+
outputs=[run_btn],
|
258 |
+
)
|
cicd/.gitkeep
ADDED
File without changes
|
cicd/configs/.gitkeep
ADDED
File without changes
|
config.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
configuration:
|
2 |
+
ethical_bias:
|
3 |
+
threshold: 0.05
|
4 |
+
performance:
|
5 |
+
alpha: 0.05
|
6 |
+
detectors:
|
7 |
+
- ethical_bias
|
8 |
+
- text_perturbation
|
9 |
+
- robustness
|
10 |
+
- performance
|
11 |
+
- underconfidence
|
12 |
+
- overconfidence
|
13 |
+
- spurious_correlation
|
fetch_utils.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
|
6 |
+
def check_dataset_and_get_config(dataset_id):
|
7 |
+
try:
|
8 |
+
configs = datasets.get_dataset_config_names(dataset_id)
|
9 |
+
return configs
|
10 |
+
except Exception:
|
11 |
+
# Dataset may not exist
|
12 |
+
return None
|
13 |
+
|
14 |
+
|
15 |
+
def check_dataset_and_get_split(dataset_id, dataset_config):
|
16 |
+
try:
|
17 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)
|
18 |
+
except Exception as e:
|
19 |
+
# Dataset may not exist
|
20 |
+
logging.warning(
|
21 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
22 |
+
)
|
23 |
+
return None
|
24 |
+
try:
|
25 |
+
splits = list(ds.keys())
|
26 |
+
return splits
|
27 |
+
except Exception as e:
|
28 |
+
# Dataset has no splits
|
29 |
+
logging.warning(
|
30 |
+
f"Dataset {dataset_id} with config {dataset_config} has no splits: {e}"
|
31 |
+
)
|
32 |
+
return None
|
index.html
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<meta charset="utf-8" />
|
5 |
+
<meta name="viewport" content="width=device-width" />
|
6 |
+
<title>My static Space</title>
|
7 |
+
<link rel="stylesheet" href="style.css" />
|
8 |
+
</head>
|
9 |
+
<body>
|
10 |
+
<div class="card">
|
11 |
+
<h1>Welcome to your static Space!</h1>
|
12 |
+
<p>You can modify this app directly by editing <i>index.html</i> in the Files and versions tab.</p>
|
13 |
+
<p>
|
14 |
+
Also don't forget to check the
|
15 |
+
<a href="https://huggingface.co/docs/hub/spaces" target="_blank">Spaces documentation</a>.
|
16 |
+
</p>
|
17 |
+
</div>
|
18 |
+
</body>
|
19 |
+
</html>
|
io_utils.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import yaml
|
4 |
+
|
5 |
+
YAML_PATH = "./cicd/configs"
|
6 |
+
LOG_FILE = "temp_log"
|
7 |
+
|
8 |
+
|
9 |
+
class Dumper(yaml.Dumper):
|
10 |
+
def increase_indent(self, flow=False, *args, **kwargs):
|
11 |
+
return super().increase_indent(flow=flow, indentless=False)
|
12 |
+
|
13 |
+
|
14 |
+
def get_yaml_path(uid):
|
15 |
+
if not os.path.exists(YAML_PATH):
|
16 |
+
os.makedirs(YAML_PATH)
|
17 |
+
if not os.path.exists(f"{YAML_PATH}/{uid}_config.yaml"):
|
18 |
+
os.system(f"cp config.yaml {YAML_PATH}/{uid}_config.yaml")
|
19 |
+
return f"{YAML_PATH}/{uid}_config.yaml"
|
20 |
+
|
21 |
+
|
22 |
+
# read scanners from yaml file
|
23 |
+
# return a list of scanners
|
24 |
+
def read_scanners(uid):
|
25 |
+
scanners = []
|
26 |
+
with open(get_yaml_path(uid), "r") as f:
|
27 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
28 |
+
scanners = config.get("detectors", [])
|
29 |
+
return scanners
|
30 |
+
|
31 |
+
|
32 |
+
# convert a list of scanners to yaml file
|
33 |
+
def write_scanners(scanners, uid):
|
34 |
+
with open(get_yaml_path(uid), "r") as f:
|
35 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
36 |
+
if config:
|
37 |
+
config["detectors"] = scanners
|
38 |
+
# save scanners to detectors in yaml
|
39 |
+
with open(get_yaml_path(uid), "w") as f:
|
40 |
+
yaml.dump(config, f, Dumper=Dumper)
|
41 |
+
|
42 |
+
|
43 |
+
# read model_type from yaml file
|
44 |
+
def read_inference_type(uid):
|
45 |
+
inference_type = ""
|
46 |
+
with open(get_yaml_path(uid), "r") as f:
|
47 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
48 |
+
inference_type = config.get("inference_type", "")
|
49 |
+
return inference_type
|
50 |
+
|
51 |
+
|
52 |
+
# write model_type to yaml file
|
53 |
+
def write_inference_type(use_inference, inference_token, uid):
|
54 |
+
with open(get_yaml_path(uid), "r") as f:
|
55 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
56 |
+
if use_inference:
|
57 |
+
config["inference_type"] = "hf_inference_api"
|
58 |
+
config["inference_token"] = inference_token
|
59 |
+
else:
|
60 |
+
config["inference_type"] = "hf_pipeline"
|
61 |
+
# FIXME: A quick and temp fix for missing token
|
62 |
+
config["inference_token"] = ""
|
63 |
+
# save inference_type to inference_type in yaml
|
64 |
+
with open(get_yaml_path(uid), "w") as f:
|
65 |
+
yaml.dump(config, f, Dumper=Dumper)
|
66 |
+
|
67 |
+
|
68 |
+
# read column mapping from yaml file
|
69 |
+
def read_column_mapping(uid):
|
70 |
+
column_mapping = {}
|
71 |
+
with open(get_yaml_path(uid), "r") as f:
|
72 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
73 |
+
if config:
|
74 |
+
column_mapping = config.get("column_mapping", dict())
|
75 |
+
return column_mapping
|
76 |
+
|
77 |
+
|
78 |
+
# write column mapping to yaml file
|
79 |
+
def write_column_mapping(mapping, uid):
|
80 |
+
with open(get_yaml_path(uid), "r") as f:
|
81 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
82 |
+
|
83 |
+
if config is None:
|
84 |
+
return
|
85 |
+
if mapping is None and "column_mapping" in config.keys():
|
86 |
+
del config["column_mapping"]
|
87 |
+
else:
|
88 |
+
config["column_mapping"] = mapping
|
89 |
+
with open(get_yaml_path(uid), "w") as f:
|
90 |
+
# yaml Dumper will by default sort the keys
|
91 |
+
yaml.dump(config, f, Dumper=Dumper, sort_keys=False)
|
92 |
+
|
93 |
+
|
94 |
+
# convert column mapping dataframe to json
|
95 |
+
def convert_column_mapping_to_json(df, label=""):
|
96 |
+
column_mapping = {}
|
97 |
+
column_mapping[label] = []
|
98 |
+
for _, row in df.iterrows():
|
99 |
+
column_mapping[label].append(row.tolist())
|
100 |
+
return column_mapping
|
101 |
+
|
102 |
+
|
103 |
+
def get_log_file_with_uid(uid):
|
104 |
+
try:
|
105 |
+
print(f"Loading {uid}.log")
|
106 |
+
with open(f"./tmp/{uid}.log", "a") as file:
|
107 |
+
return file.read()
|
108 |
+
except Exception:
|
109 |
+
return "Log file does not exist"
|
110 |
+
|
111 |
+
|
112 |
+
def get_logs_file():
|
113 |
+
try:
|
114 |
+
with open(LOG_FILE, "r") as file:
|
115 |
+
return file.read()
|
116 |
+
except Exception:
|
117 |
+
return "Log file does not exist"
|
118 |
+
|
119 |
+
|
120 |
+
def write_log_to_user_file(task_id, log):
|
121 |
+
with open(f"./tmp/{task_id}.log", "a") as f:
|
122 |
+
f.write(log)
|
isolated_env.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
from io_utils import write_log_to_user_file
|
5 |
+
|
6 |
+
|
7 |
+
def prepare_venv(execution_id, deps):
|
8 |
+
python_executable = "python"
|
9 |
+
venv_base = f"tmp/venvs/{execution_id}"
|
10 |
+
|
11 |
+
pip_executable = os.path.join(venv_base, "bin", "pip")
|
12 |
+
# Check pyver
|
13 |
+
write_log_to_user_file(execution_id, "Checking Python version\n")
|
14 |
+
p = subprocess.run([python_executable, "--version"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
15 |
+
write_log_to_user_file(execution_id, p.stdout.decode())
|
16 |
+
if p.returncode != 0:
|
17 |
+
raise RuntimeError(f"{p.args} ended with {p.returncode}")
|
18 |
+
# Create venv
|
19 |
+
write_log_to_user_file(execution_id, "Creating virtual environment\n")
|
20 |
+
p = subprocess.run([python_executable, "-m", "venv", venv_base, "--clear"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
21 |
+
write_log_to_user_file(execution_id, p.stdout.decode())
|
22 |
+
if p.returncode != 0:
|
23 |
+
raise RuntimeError(f"{p.args} ended with {p.returncode}")
|
24 |
+
# Output requirements.txt
|
25 |
+
requirement_file = os.path.join(venv_base, "requirements.txt")
|
26 |
+
with open(requirement_file, "w") as f:
|
27 |
+
f.writelines(deps)
|
28 |
+
# Install deps
|
29 |
+
write_log_to_user_file(execution_id, "Installing dependencies\n")
|
30 |
+
p = subprocess.run([pip_executable, "install", "-r", requirement_file], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
31 |
+
write_log_to_user_file(execution_id, p.stdout.decode())
|
32 |
+
if p.returncode != 0:
|
33 |
+
raise RuntimeError(f"{p.args} ended with {p.returncode}")
|
34 |
+
return os.path.join(venv_base, "bin", "giskard_scanner")
|
leaderboard.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
records = pd.DataFrame()
|
4 |
+
|
5 |
+
LEADERBOARD = "giskard-bot/evaluator-leaderboard"
|
mlflow_test.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from mlflow.utils.environment import _PythonEnv
|
3 |
+
from mlflow.utils.virtualenv import (
|
4 |
+
_PYENV_ROOT_DIR,
|
5 |
+
_VIRTUALENV_ENVS_DIR,
|
6 |
+
_create_virtualenv,
|
7 |
+
_get_mlflow_virtualenv_root,
|
8 |
+
_get_virtualenv_extra_env_vars,
|
9 |
+
_get_virtualenv_name,
|
10 |
+
_install_python,
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
_create_virtualenv(
|
15 |
+
"/Users/inoki/giskard-home/projects/credit/models/2a2b6a9c-4050-4bb6-9024-00bf15651262",
|
16 |
+
Path("/opt/homebrew/bin/python3.10"),
|
17 |
+
Path("/Users/inoki/giskard-home/mlflow-venv1"),
|
18 |
+
_PythonEnv()
|
19 |
+
)
|
20 |
+
|
output/.gitkeep
ADDED
File without changes
|
pipe.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
jobs = list()
|
3 |
+
current = None
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
giskard
|
2 |
+
huggingface_hub
|
3 |
+
hf-transfer
|
4 |
+
torch==2.0.1
|
5 |
+
transformers
|
6 |
+
datasets
|
7 |
+
-e git+https://github.com/Giskard-AI/cicd.git#egg=giskard-cicd
|
run_jobs.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import threading
|
6 |
+
import time
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import pipe
|
10 |
+
from app_env import (
|
11 |
+
HF_GSK_HUB_HF_TOKEN,
|
12 |
+
HF_GSK_HUB_KEY,
|
13 |
+
HF_GSK_HUB_PROJECT_KEY,
|
14 |
+
HF_GSK_HUB_UNLOCK_TOKEN,
|
15 |
+
HF_GSK_HUB_URL,
|
16 |
+
HF_REPO_ID,
|
17 |
+
HF_SPACE_ID,
|
18 |
+
HF_WRITE_TOKEN,
|
19 |
+
)
|
20 |
+
from io_utils import LOG_FILE, get_yaml_path, write_log_to_user_file
|
21 |
+
from isolated_env import prepare_venv
|
22 |
+
from leaderboard import LEADERBOARD
|
23 |
+
|
24 |
+
is_running = False
|
25 |
+
|
26 |
+
logger = logging.getLogger(__file__)
|
27 |
+
|
28 |
+
|
29 |
+
def start_process_run_job():
|
30 |
+
try:
|
31 |
+
logging.debug("Running jobs in thread")
|
32 |
+
global thread, is_running
|
33 |
+
thread = threading.Thread(target=run_job)
|
34 |
+
thread.daemon = True
|
35 |
+
is_running = True
|
36 |
+
thread.start()
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
print("Failed to start thread: ", e)
|
40 |
+
|
41 |
+
|
42 |
+
def stop_thread():
|
43 |
+
logging.debug("Stop thread")
|
44 |
+
global is_running
|
45 |
+
is_running = False
|
46 |
+
|
47 |
+
|
48 |
+
def prepare_env_and_get_command(
|
49 |
+
m_id,
|
50 |
+
d_id,
|
51 |
+
config,
|
52 |
+
split,
|
53 |
+
inference,
|
54 |
+
inference_token,
|
55 |
+
uid,
|
56 |
+
label_mapping,
|
57 |
+
feature_mapping,
|
58 |
+
):
|
59 |
+
leaderboard_dataset = None
|
60 |
+
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
|
61 |
+
leaderboard_dataset = LEADERBOARD
|
62 |
+
|
63 |
+
inference_type = "hf_pipeline"
|
64 |
+
if inference and inference_token:
|
65 |
+
inference_type = "hf_inference_api"
|
66 |
+
|
67 |
+
executable = "giskard_scanner"
|
68 |
+
try:
|
69 |
+
# Copy the current requirements (might be changed)
|
70 |
+
with open("requirements.txt", "r") as f:
|
71 |
+
executable = prepare_venv(
|
72 |
+
uid,
|
73 |
+
"\n".join(f.readlines()),
|
74 |
+
)
|
75 |
+
logger.info(f"Using {executable} as executable")
|
76 |
+
except Exception as e:
|
77 |
+
logger.warn(f"Create env failed due to {e}, using the current env as fallback.")
|
78 |
+
executable = "giskard_scanner"
|
79 |
+
|
80 |
+
command = [
|
81 |
+
executable,
|
82 |
+
"--loader",
|
83 |
+
"huggingface",
|
84 |
+
"--model",
|
85 |
+
m_id,
|
86 |
+
"--dataset",
|
87 |
+
d_id,
|
88 |
+
"--dataset_config",
|
89 |
+
config,
|
90 |
+
"--dataset_split",
|
91 |
+
split,
|
92 |
+
"--output_format",
|
93 |
+
"markdown",
|
94 |
+
"--output_portal",
|
95 |
+
"huggingface",
|
96 |
+
"--feature_mapping",
|
97 |
+
json.dumps(feature_mapping),
|
98 |
+
"--label_mapping",
|
99 |
+
json.dumps(label_mapping),
|
100 |
+
"--scan_config",
|
101 |
+
get_yaml_path(uid),
|
102 |
+
"--inference_type",
|
103 |
+
inference_type,
|
104 |
+
"--inference_api_token",
|
105 |
+
inference_token,
|
106 |
+
]
|
107 |
+
# The token to publish post
|
108 |
+
if os.environ.get(HF_WRITE_TOKEN):
|
109 |
+
command.append("--hf_token")
|
110 |
+
command.append(os.environ.get(HF_WRITE_TOKEN))
|
111 |
+
|
112 |
+
# The repo to publish post
|
113 |
+
if os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID):
|
114 |
+
command.append("--discussion_repo")
|
115 |
+
# TODO: Replace by the model id
|
116 |
+
command.append(os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID))
|
117 |
+
|
118 |
+
# The repo to publish for ranking
|
119 |
+
if leaderboard_dataset:
|
120 |
+
command.append("--leaderboard_dataset")
|
121 |
+
command.append(leaderboard_dataset)
|
122 |
+
|
123 |
+
# The info to upload to Giskard hub
|
124 |
+
if os.environ.get(HF_GSK_HUB_KEY):
|
125 |
+
command.append("--giskard_hub_api_key")
|
126 |
+
command.append(os.environ.get(HF_GSK_HUB_KEY))
|
127 |
+
if os.environ.get(HF_GSK_HUB_URL):
|
128 |
+
command.append("--giskard_hub_url")
|
129 |
+
command.append(os.environ.get(HF_GSK_HUB_URL))
|
130 |
+
if os.environ.get(HF_GSK_HUB_PROJECT_KEY):
|
131 |
+
command.append("--giskard_hub_project_key")
|
132 |
+
command.append(os.environ.get(HF_GSK_HUB_PROJECT_KEY))
|
133 |
+
if os.environ.get(HF_GSK_HUB_HF_TOKEN):
|
134 |
+
command.append("--giskard_hub_hf_token")
|
135 |
+
command.append(os.environ.get(HF_GSK_HUB_HF_TOKEN))
|
136 |
+
if os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN):
|
137 |
+
command.append("--giskard_hub_unlock_token")
|
138 |
+
command.append(os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN))
|
139 |
+
|
140 |
+
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
141 |
+
|
142 |
+
write_log_to_user_file(
|
143 |
+
uid,
|
144 |
+
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
|
145 |
+
)
|
146 |
+
|
147 |
+
return command
|
148 |
+
|
149 |
+
|
150 |
+
def save_job_to_pipe(task_id, job, description, lock):
|
151 |
+
with lock:
|
152 |
+
pipe.jobs.append((task_id, job, description))
|
153 |
+
|
154 |
+
|
155 |
+
def pop_job_from_pipe():
|
156 |
+
if len(pipe.jobs) == 0:
|
157 |
+
return
|
158 |
+
job_info = pipe.jobs.pop()
|
159 |
+
pipe.current = job_info[2]
|
160 |
+
task_id = job_info[0]
|
161 |
+
|
162 |
+
# Link to LOG_FILE
|
163 |
+
log_file_path = Path(LOG_FILE)
|
164 |
+
if log_file_path.exists():
|
165 |
+
log_file_path.unlink()
|
166 |
+
os.symlink(f"./tmp/{task_id}.log", LOG_FILE)
|
167 |
+
|
168 |
+
write_log_to_user_file(task_id, f"Running job id {task_id}\n")
|
169 |
+
command = prepare_env_and_get_command(*job_info[1])
|
170 |
+
|
171 |
+
with open(f"./tmp/{task_id}.log", "a") as log_file:
|
172 |
+
p = subprocess.Popen(command, stdout=log_file, stderr=subprocess.STDOUT)
|
173 |
+
p.wait()
|
174 |
+
pipe.current = None
|
175 |
+
|
176 |
+
|
177 |
+
def run_job():
|
178 |
+
global is_running
|
179 |
+
while is_running:
|
180 |
+
try:
|
181 |
+
pop_job_from_pipe()
|
182 |
+
time.sleep(10)
|
183 |
+
except KeyboardInterrupt:
|
184 |
+
logging.debug("KeyboardInterrupt stop background thread")
|
185 |
+
is_running = False
|
186 |
+
break
|
scan_config.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
detectors:
|
2 |
+
- ethical_bias
|
3 |
+
- text_perturbation
|
4 |
+
- robustness
|
5 |
+
- performance
|
6 |
+
- underconfidence
|
7 |
+
- overconfidence
|
8 |
+
- spurious_correlation
|
style.css
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
padding: 2rem;
|
3 |
+
font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
|
4 |
+
}
|
5 |
+
|
6 |
+
h1 {
|
7 |
+
font-size: 16px;
|
8 |
+
margin-top: 0;
|
9 |
+
}
|
10 |
+
|
11 |
+
p {
|
12 |
+
color: rgb(107, 114, 128);
|
13 |
+
font-size: 15px;
|
14 |
+
margin-bottom: 10px;
|
15 |
+
margin-top: 5px;
|
16 |
+
}
|
17 |
+
|
18 |
+
.card {
|
19 |
+
max-width: 620px;
|
20 |
+
margin: 0 auto;
|
21 |
+
padding: 16px;
|
22 |
+
border: 1px solid lightgray;
|
23 |
+
border-radius: 16px;
|
24 |
+
}
|
25 |
+
|
26 |
+
.card p:last-child {
|
27 |
+
margin-bottom: 0;
|
28 |
+
}
|
text_classification.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import huggingface_hub
|
6 |
+
import pandas as pd
|
7 |
+
from transformers import pipeline
|
8 |
+
import requests
|
9 |
+
import os
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
13 |
+
|
14 |
+
logger = logging.getLogger(__file__)
|
15 |
+
|
16 |
+
class HuggingFaceInferenceAPIResponse:
|
17 |
+
def __init__(self, message):
|
18 |
+
self.message = message
|
19 |
+
|
20 |
+
|
21 |
+
def get_labels_and_features_from_dataset(ds):
|
22 |
+
try:
|
23 |
+
dataset_features = ds.features
|
24 |
+
label_keys = [i for i in dataset_features.keys() if i.startswith('label')]
|
25 |
+
if len(label_keys) == 0: # no labels found
|
26 |
+
# return everything for post processing
|
27 |
+
return list(dataset_features.keys()), list(dataset_features.keys())
|
28 |
+
if not isinstance(dataset_features[label_keys[0]], datasets.ClassLabel):
|
29 |
+
if hasattr(dataset_features[label_keys[0]], 'feature'):
|
30 |
+
label_feat = dataset_features[label_keys[0]].feature
|
31 |
+
labels = label_feat.names
|
32 |
+
else:
|
33 |
+
labels = dataset_features[label_keys[0]].names
|
34 |
+
features = [f for f in dataset_features.keys() if not f.startswith("label")]
|
35 |
+
return labels, features
|
36 |
+
except Exception as e:
|
37 |
+
logging.warning(
|
38 |
+
f"Get Labels/Features Failed for dataset: {e}"
|
39 |
+
)
|
40 |
+
return None, None
|
41 |
+
|
42 |
+
def check_model_task(model_id):
|
43 |
+
# check if model is valid on huggingface
|
44 |
+
try:
|
45 |
+
task = huggingface_hub.model_info(model_id).pipeline_tag
|
46 |
+
if task is None:
|
47 |
+
return None
|
48 |
+
return task
|
49 |
+
except Exception:
|
50 |
+
return None
|
51 |
+
|
52 |
+
def get_model_labels(model_id, example_input):
|
53 |
+
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
54 |
+
payload = {"inputs": example_input, "options": {"use_cache": True}}
|
55 |
+
response = hf_inference_api(model_id, hf_token, payload)
|
56 |
+
if "error" in response:
|
57 |
+
return None
|
58 |
+
return extract_from_response(response, "label")
|
59 |
+
|
60 |
+
def extract_from_response(data, key):
|
61 |
+
results = []
|
62 |
+
|
63 |
+
if isinstance(data, dict):
|
64 |
+
res = data.get(key)
|
65 |
+
if res is not None:
|
66 |
+
results.append(res)
|
67 |
+
|
68 |
+
for value in data.values():
|
69 |
+
results.extend(extract_from_response(value, key))
|
70 |
+
|
71 |
+
elif isinstance(data, list):
|
72 |
+
for element in data:
|
73 |
+
results.extend(extract_from_response(element, key))
|
74 |
+
|
75 |
+
return results
|
76 |
+
|
77 |
+
def hf_inference_api(model_id, hf_token, payload):
|
78 |
+
hf_inference_api_endpoint = os.environ.get(
|
79 |
+
"HF_INFERENCE_ENDPOINT", default="https://api-inference.huggingface.co"
|
80 |
+
)
|
81 |
+
url = f"{hf_inference_api_endpoint}/models/{model_id}"
|
82 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
83 |
+
response = requests.post(url, headers=headers, json=payload)
|
84 |
+
if not hasattr(response, "status_code") or response.status_code != 200:
|
85 |
+
logger.warning(f"Request to inference API returns {response}")
|
86 |
+
try:
|
87 |
+
return response.json()
|
88 |
+
except Exception:
|
89 |
+
return {"error": response.content}
|
90 |
+
|
91 |
+
def preload_hf_inference_api(model_id):
|
92 |
+
payload = {"inputs": "This is a test", "options": {"use_cache": True, }}
|
93 |
+
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
94 |
+
hf_inference_api(model_id, hf_token, payload)
|
95 |
+
|
96 |
+
def check_model_pipeline(model_id):
|
97 |
+
try:
|
98 |
+
task = huggingface_hub.model_info(model_id).pipeline_tag
|
99 |
+
except Exception:
|
100 |
+
return None
|
101 |
+
|
102 |
+
try:
|
103 |
+
ppl = pipeline(task=task, model=model_id)
|
104 |
+
|
105 |
+
return ppl
|
106 |
+
except Exception:
|
107 |
+
return None
|
108 |
+
|
109 |
+
|
110 |
+
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
111 |
+
for model_label in id2label_mapping.keys():
|
112 |
+
if model_label.upper() == label.upper():
|
113 |
+
return model_label, label
|
114 |
+
return None, label
|
115 |
+
|
116 |
+
|
117 |
+
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
|
118 |
+
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
|
119 |
+
dataset_labels = None
|
120 |
+
for feature in dataset_features.values():
|
121 |
+
if not isinstance(feature, datasets.ClassLabel):
|
122 |
+
continue
|
123 |
+
if len(feature.names) != len(id2label_mapping.keys()):
|
124 |
+
continue
|
125 |
+
|
126 |
+
dataset_labels = feature.names
|
127 |
+
# Try to match labels
|
128 |
+
for label in feature.names:
|
129 |
+
if label in id2label_mapping.keys():
|
130 |
+
model_label = label
|
131 |
+
else:
|
132 |
+
# Try to find case unsensative
|
133 |
+
model_label, label = text_classificaiton_match_label_case_unsensative(
|
134 |
+
id2label_mapping, label
|
135 |
+
)
|
136 |
+
if model_label is not None:
|
137 |
+
id2label_mapping[model_label] = label
|
138 |
+
else:
|
139 |
+
print(f"Label {label} is not found in model labels")
|
140 |
+
|
141 |
+
return id2label_mapping, dataset_labels
|
142 |
+
|
143 |
+
|
144 |
+
"""
|
145 |
+
params:
|
146 |
+
column_mapping: dict
|
147 |
+
example: {
|
148 |
+
"text": "sentences",
|
149 |
+
"label": {
|
150 |
+
"label0": "LABEL_0",
|
151 |
+
"label1": "LABEL_1"
|
152 |
+
}
|
153 |
+
}
|
154 |
+
ppl: pipeline
|
155 |
+
"""
|
156 |
+
|
157 |
+
|
158 |
+
def check_column_mapping_keys_validity(column_mapping, ppl):
|
159 |
+
# get the element in all the list elements
|
160 |
+
column_mapping = json.loads(column_mapping)
|
161 |
+
if "data" not in column_mapping.keys():
|
162 |
+
return True
|
163 |
+
user_labels = set([pair[0] for pair in column_mapping["data"]])
|
164 |
+
model_labels = set([pair[1] for pair in column_mapping["data"]])
|
165 |
+
|
166 |
+
id2label = ppl.model.config.id2label
|
167 |
+
original_labels = set(id2label.values())
|
168 |
+
|
169 |
+
return user_labels == model_labels == original_labels
|
170 |
+
|
171 |
+
|
172 |
+
"""
|
173 |
+
params:
|
174 |
+
column_mapping: dict
|
175 |
+
dataset_features: dict
|
176 |
+
example: {
|
177 |
+
'text': Value(dtype='string', id=None),
|
178 |
+
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
|
179 |
+
}
|
180 |
+
"""
|
181 |
+
|
182 |
+
|
183 |
+
def infer_text_input_column(column_mapping, dataset_features):
|
184 |
+
# Check whether we need to infer the text input column
|
185 |
+
infer_text_input_column = True
|
186 |
+
feature_map_df = None
|
187 |
+
|
188 |
+
if "text" in column_mapping.keys():
|
189 |
+
dataset_text_column = column_mapping["text"]
|
190 |
+
if dataset_text_column in dataset_features.keys():
|
191 |
+
infer_text_input_column = False
|
192 |
+
else:
|
193 |
+
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
|
194 |
+
|
195 |
+
if infer_text_input_column:
|
196 |
+
# Try to retrieve one
|
197 |
+
candidates = [
|
198 |
+
f for f in dataset_features if dataset_features[f].dtype == "string"
|
199 |
+
]
|
200 |
+
feature_map_df = pd.DataFrame(
|
201 |
+
{"Dataset Features": [candidates[0]], "Model Input Features": ["text"]}
|
202 |
+
)
|
203 |
+
if len(candidates) > 0:
|
204 |
+
logging.debug(f"Candidates are {candidates}")
|
205 |
+
column_mapping["text"] = candidates[0]
|
206 |
+
|
207 |
+
return column_mapping, feature_map_df
|
208 |
+
|
209 |
+
|
210 |
+
"""
|
211 |
+
params:
|
212 |
+
column_mapping: dict
|
213 |
+
id2label_mapping: dict
|
214 |
+
example:
|
215 |
+
id2label_mapping: {
|
216 |
+
'negative': 'negative',
|
217 |
+
'neutral': 'neutral',
|
218 |
+
'positive': 'positive'
|
219 |
+
}
|
220 |
+
"""
|
221 |
+
|
222 |
+
|
223 |
+
def infer_output_label_column(
|
224 |
+
column_mapping, id2label_mapping, id2label, dataset_labels
|
225 |
+
):
|
226 |
+
# Check whether we need to infer the output label column
|
227 |
+
if "data" in column_mapping.keys():
|
228 |
+
if isinstance(column_mapping["data"], list):
|
229 |
+
# Use the column mapping passed by user
|
230 |
+
for user_label, model_label in column_mapping["data"]:
|
231 |
+
id2label_mapping[model_label] = user_label
|
232 |
+
elif None in id2label_mapping.values():
|
233 |
+
column_mapping["label"] = {i: None for i in id2label.keys()}
|
234 |
+
return column_mapping, None
|
235 |
+
|
236 |
+
if "data" not in column_mapping.keys():
|
237 |
+
# Column mapping should contain original model labels
|
238 |
+
column_mapping["label"] = {
|
239 |
+
str(i): id2label_mapping[label]
|
240 |
+
for i, label in zip(id2label.keys(), dataset_labels)
|
241 |
+
}
|
242 |
+
|
243 |
+
id2label_df = pd.DataFrame(
|
244 |
+
{
|
245 |
+
"Dataset Labels": dataset_labels,
|
246 |
+
"Model Prediction Labels": [
|
247 |
+
id2label_mapping[label] for label in dataset_labels
|
248 |
+
],
|
249 |
+
}
|
250 |
+
)
|
251 |
+
|
252 |
+
return column_mapping, id2label_df
|
253 |
+
|
254 |
+
|
255 |
+
def check_dataset_features_validity(d_id, config, split):
|
256 |
+
# We assume dataset is ok here
|
257 |
+
ds = datasets.load_dataset(d_id, config)[split]
|
258 |
+
try:
|
259 |
+
dataset_features = ds.features
|
260 |
+
except AttributeError:
|
261 |
+
# Dataset does not have features, need to provide everything
|
262 |
+
return None, None
|
263 |
+
# Load dataset as DataFrame
|
264 |
+
df = ds.to_pandas()
|
265 |
+
|
266 |
+
return df, dataset_features
|
267 |
+
|
268 |
+
def select_the_first_string_column(ds):
|
269 |
+
for feature in ds.features.keys():
|
270 |
+
if isinstance(ds[0][feature], str):
|
271 |
+
return feature
|
272 |
+
return None
|
273 |
+
|
274 |
+
|
275 |
+
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
276 |
+
# get a sample prediction from the model on the dataset
|
277 |
+
prediction_input = None
|
278 |
+
prediction_result = None
|
279 |
+
try:
|
280 |
+
# Use the first item to test prediction
|
281 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
282 |
+
if "text" not in ds.features.keys():
|
283 |
+
# Dataset does not have text column
|
284 |
+
prediction_input = ds[0][select_the_first_string_column(ds)]
|
285 |
+
else:
|
286 |
+
prediction_input = ds[0]["text"]
|
287 |
+
|
288 |
+
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
289 |
+
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
290 |
+
results = hf_inference_api(model_id, hf_token, payload)
|
291 |
+
|
292 |
+
if isinstance(results, dict) and "error" in results.keys():
|
293 |
+
if "estimated_time" in results.keys():
|
294 |
+
return prediction_input, HuggingFaceInferenceAPIResponse(
|
295 |
+
f"Estimated time: {int(results['estimated_time'])}s. Please try again later.")
|
296 |
+
return prediction_input, HuggingFaceInferenceAPIResponse(
|
297 |
+
f"Inference Error: {results['error']}.")
|
298 |
+
|
299 |
+
while isinstance(results, list):
|
300 |
+
if isinstance(results[0], dict):
|
301 |
+
break
|
302 |
+
results = results[0]
|
303 |
+
prediction_result = {
|
304 |
+
f'{result["label"]}': result["score"] for result in results
|
305 |
+
}
|
306 |
+
except Exception as e:
|
307 |
+
# inference api prediction failed, show the error message
|
308 |
+
logger.error(f"Get example prediction failed {e}")
|
309 |
+
return prediction_input, None
|
310 |
+
|
311 |
+
return prediction_input, prediction_result
|
312 |
+
|
313 |
+
|
314 |
+
def get_sample_prediction(ppl, df, column_mapping, id2label_mapping):
|
315 |
+
# get a sample prediction from the model on the dataset
|
316 |
+
prediction_input = None
|
317 |
+
prediction_result = None
|
318 |
+
try:
|
319 |
+
# Use the first item to test prediction
|
320 |
+
prediction_input = df.head(1).at[0, column_mapping["text"]]
|
321 |
+
results = ppl({"text": prediction_input}, top_k=None)
|
322 |
+
prediction_result = {
|
323 |
+
f'{result["label"]}': result["score"] for result in results
|
324 |
+
}
|
325 |
+
except Exception:
|
326 |
+
# Pipeline prediction failed, need to provide labels
|
327 |
+
return prediction_input, None
|
328 |
+
|
329 |
+
# Display results in original label and mapped label
|
330 |
+
prediction_result = {
|
331 |
+
f'{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result[
|
332 |
+
"score"
|
333 |
+
]
|
334 |
+
for result in results
|
335 |
+
}
|
336 |
+
return prediction_input, prediction_result
|
337 |
+
|
338 |
+
|
339 |
+
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
340 |
+
# load dataset as pd DataFrame
|
341 |
+
# get features column from dataset
|
342 |
+
df, dataset_features = check_dataset_features_validity(d_id, config, split)
|
343 |
+
|
344 |
+
column_mapping, feature_map_df = infer_text_input_column(
|
345 |
+
column_mapping, dataset_features
|
346 |
+
)
|
347 |
+
if feature_map_df is None:
|
348 |
+
# dataset does not have any features
|
349 |
+
return None, None, None, None, None
|
350 |
+
|
351 |
+
# Retrieve all labels
|
352 |
+
id2label = ppl.model.config.id2label
|
353 |
+
|
354 |
+
# Infer labels
|
355 |
+
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(
|
356 |
+
id2label, dataset_features
|
357 |
+
)
|
358 |
+
column_mapping, id2label_df = infer_output_label_column(
|
359 |
+
column_mapping, id2label_mapping, id2label, dataset_labels
|
360 |
+
)
|
361 |
+
if id2label_df is None:
|
362 |
+
# does not able to infer output label column
|
363 |
+
return column_mapping, None, None, None, feature_map_df
|
364 |
+
|
365 |
+
# Get a sample prediction
|
366 |
+
prediction_input, prediction_result = get_sample_prediction(
|
367 |
+
ppl, df, column_mapping, id2label_mapping
|
368 |
+
)
|
369 |
+
if prediction_result is None:
|
370 |
+
# does not able to get a sample prediction
|
371 |
+
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
372 |
+
|
373 |
+
return (
|
374 |
+
column_mapping,
|
375 |
+
prediction_input,
|
376 |
+
prediction_result,
|
377 |
+
id2label_df,
|
378 |
+
feature_map_df,
|
379 |
+
)
|
380 |
+
|
381 |
+
def strip_model_id_from_url(model_id):
|
382 |
+
if model_id.startswith("https://huggingface.co/"):
|
383 |
+
return "/".join(model_id.split("/")[-2])
|
384 |
+
return model_id
|
text_classification_ui_helpers.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import logging
|
3 |
+
import threading
|
4 |
+
import uuid
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
import leaderboard
|
11 |
+
from io_utils import read_column_mapping, write_column_mapping
|
12 |
+
from run_jobs import save_job_to_pipe
|
13 |
+
from text_classification import (
|
14 |
+
strip_model_id_from_url,
|
15 |
+
check_model_task,
|
16 |
+
preload_hf_inference_api,
|
17 |
+
get_example_prediction,
|
18 |
+
get_labels_and_features_from_dataset,
|
19 |
+
HuggingFaceInferenceAPIResponse,
|
20 |
+
)
|
21 |
+
from wordings import (
|
22 |
+
CHECK_CONFIG_OR_SPLIT_RAW,
|
23 |
+
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
24 |
+
MAPPING_STYLED_ERROR_WARNING,
|
25 |
+
NOT_TEXT_CLASSIFICATION_MODEL_RAW,
|
26 |
+
get_styled_input,
|
27 |
+
)
|
28 |
+
|
29 |
+
MAX_LABELS = 40
|
30 |
+
MAX_FEATURES = 20
|
31 |
+
|
32 |
+
ds_dict = None
|
33 |
+
ds_config = None
|
34 |
+
|
35 |
+
def get_related_datasets_from_leaderboard(model_id):
|
36 |
+
records = leaderboard.records
|
37 |
+
model_id = strip_model_id_from_url(model_id)
|
38 |
+
model_records = records[records["model_id"] == model_id]
|
39 |
+
datasets_unique = list(model_records["dataset_id"].unique())
|
40 |
+
|
41 |
+
if len(datasets_unique) == 0:
|
42 |
+
return gr.update(choices=[], value="")
|
43 |
+
|
44 |
+
return gr.update(choices=datasets_unique, value=datasets_unique[0])
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.getLogger(__file__)
|
48 |
+
|
49 |
+
|
50 |
+
def check_dataset(dataset_id):
|
51 |
+
logger.info(f"Loading {dataset_id}")
|
52 |
+
try:
|
53 |
+
configs = datasets.get_dataset_config_names(dataset_id)
|
54 |
+
if len(configs) == 0:
|
55 |
+
return (
|
56 |
+
gr.update(),
|
57 |
+
gr.update(),
|
58 |
+
""
|
59 |
+
)
|
60 |
+
splits = list(
|
61 |
+
datasets.load_dataset(
|
62 |
+
dataset_id, configs[0]
|
63 |
+
).keys()
|
64 |
+
)
|
65 |
+
return (
|
66 |
+
gr.update(choices=configs, value=configs[0], visible=True),
|
67 |
+
gr.update(choices=splits, value=splits[0], visible=True),
|
68 |
+
""
|
69 |
+
)
|
70 |
+
except Exception as e:
|
71 |
+
logger.warn(f"Check your dataset {dataset_id}: {e}")
|
72 |
+
return (
|
73 |
+
gr.update(),
|
74 |
+
gr.update(),
|
75 |
+
""
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
def write_column_mapping_to_config(uid, *labels):
|
81 |
+
# TODO: Substitute 'text' with more features for zero-shot
|
82 |
+
# we are not using ds features because we only support "text" for now
|
83 |
+
all_mappings = read_column_mapping(uid)
|
84 |
+
|
85 |
+
if labels is None:
|
86 |
+
return
|
87 |
+
all_mappings = export_mappings(all_mappings, "labels", None, labels[:MAX_LABELS])
|
88 |
+
all_mappings = export_mappings(
|
89 |
+
all_mappings,
|
90 |
+
"features",
|
91 |
+
["text"],
|
92 |
+
labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)],
|
93 |
+
)
|
94 |
+
|
95 |
+
write_column_mapping(all_mappings, uid)
|
96 |
+
|
97 |
+
|
98 |
+
def export_mappings(all_mappings, key, subkeys, values):
|
99 |
+
if key not in all_mappings.keys():
|
100 |
+
all_mappings[key] = dict()
|
101 |
+
if subkeys is None:
|
102 |
+
subkeys = list(all_mappings[key].keys())
|
103 |
+
|
104 |
+
if not subkeys:
|
105 |
+
logging.debug(f"subkeys is empty for {key}")
|
106 |
+
return all_mappings
|
107 |
+
|
108 |
+
for i, subkey in enumerate(subkeys):
|
109 |
+
if subkey:
|
110 |
+
all_mappings[key][subkey] = values[i % len(values)]
|
111 |
+
return all_mappings
|
112 |
+
|
113 |
+
|
114 |
+
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_labels, uid):
|
115 |
+
all_mappings = read_column_mapping(uid)
|
116 |
+
# For flattened raw datasets with no labels
|
117 |
+
# check if there are shared labels between model and dataset
|
118 |
+
shared_labels = set(model_labels).intersection(set(ds_labels))
|
119 |
+
if shared_labels:
|
120 |
+
ds_labels = list(shared_labels)
|
121 |
+
if len(ds_labels) > MAX_LABELS:
|
122 |
+
ds_labels = ds_labels[:MAX_LABELS]
|
123 |
+
gr.Warning(f"The number of labels is truncated to length {MAX_LABELS}")
|
124 |
+
|
125 |
+
# sort labels to make sure the order is consistent
|
126 |
+
# prediction gives the order based on probability
|
127 |
+
ds_labels.sort()
|
128 |
+
model_labels.sort()
|
129 |
+
|
130 |
+
lables = [
|
131 |
+
gr.Dropdown(
|
132 |
+
label=f"{label}",
|
133 |
+
choices=model_labels,
|
134 |
+
value=model_labels[i % len(model_labels)],
|
135 |
+
interactive=True,
|
136 |
+
visible=True,
|
137 |
+
)
|
138 |
+
for i, label in enumerate(ds_labels)
|
139 |
+
]
|
140 |
+
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
141 |
+
all_mappings = export_mappings(all_mappings, "labels", ds_labels, model_labels)
|
142 |
+
|
143 |
+
# TODO: Substitute 'text' with more features for zero-shot
|
144 |
+
features = [
|
145 |
+
gr.Dropdown(
|
146 |
+
label=f"{feature}",
|
147 |
+
choices=ds_features,
|
148 |
+
value=ds_features[0],
|
149 |
+
interactive=True,
|
150 |
+
visible=True,
|
151 |
+
)
|
152 |
+
for feature in ["text"]
|
153 |
+
]
|
154 |
+
features += [
|
155 |
+
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
|
156 |
+
]
|
157 |
+
all_mappings = export_mappings(all_mappings, "features", ["text"], ds_features)
|
158 |
+
write_column_mapping(all_mappings, uid)
|
159 |
+
|
160 |
+
return lables + features
|
161 |
+
|
162 |
+
|
163 |
+
def precheck_model_ds_enable_example_btn(
|
164 |
+
model_id, dataset_id, dataset_config, dataset_split
|
165 |
+
):
|
166 |
+
model_id = strip_model_id_from_url(model_id)
|
167 |
+
model_task = check_model_task(model_id)
|
168 |
+
preload_hf_inference_api(model_id)
|
169 |
+
if model_task is None or model_task != "text-classification":
|
170 |
+
gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
|
171 |
+
return (gr.update(), gr.update(),"")
|
172 |
+
|
173 |
+
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
|
174 |
+
return (gr.update(), gr.update(), "")
|
175 |
+
|
176 |
+
try:
|
177 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)
|
178 |
+
df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
|
179 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(ds[dataset_split])
|
180 |
+
|
181 |
+
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
182 |
+
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
|
183 |
+
return (gr.update(interactive=False), gr.update(value=df, visible=True), "")
|
184 |
+
|
185 |
+
return (gr.update(interactive=True), gr.update(value=df, visible=True), "")
|
186 |
+
except Exception as e:
|
187 |
+
# Config or split wrong
|
188 |
+
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
189 |
+
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
|
190 |
+
|
191 |
+
|
192 |
+
def align_columns_and_show_prediction(
|
193 |
+
model_id,
|
194 |
+
dataset_id,
|
195 |
+
dataset_config,
|
196 |
+
dataset_split,
|
197 |
+
uid,
|
198 |
+
run_inference,
|
199 |
+
inference_token,
|
200 |
+
):
|
201 |
+
model_id = strip_model_id_from_url(model_id)
|
202 |
+
model_task = check_model_task(model_id)
|
203 |
+
if model_task is None or model_task != "text-classification":
|
204 |
+
gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
|
205 |
+
return (
|
206 |
+
gr.update(visible=False),
|
207 |
+
gr.update(visible=False),
|
208 |
+
gr.update(visible=False, open=False),
|
209 |
+
gr.update(interactive=False),
|
210 |
+
"",
|
211 |
+
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
|
212 |
+
)
|
213 |
+
|
214 |
+
dropdown_placement = [
|
215 |
+
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
216 |
+
]
|
217 |
+
|
218 |
+
prediction_input, prediction_response = get_example_prediction(
|
219 |
+
model_id, dataset_id, dataset_config, dataset_split
|
220 |
+
)
|
221 |
+
|
222 |
+
if prediction_input is None or prediction_response is None:
|
223 |
+
return (
|
224 |
+
gr.update(visible=False),
|
225 |
+
gr.update(visible=False),
|
226 |
+
gr.update(visible=False, open=False),
|
227 |
+
gr.update(interactive=False),
|
228 |
+
"",
|
229 |
+
*dropdown_placement,
|
230 |
+
)
|
231 |
+
|
232 |
+
if isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
|
233 |
+
return (
|
234 |
+
gr.update(visible=False),
|
235 |
+
gr.update(visible=False),
|
236 |
+
gr.update(visible=False, open=False),
|
237 |
+
gr.update(interactive=False),
|
238 |
+
f"Hugging Face Inference API is loading your model. {prediction_response.message}",
|
239 |
+
*dropdown_placement,
|
240 |
+
)
|
241 |
+
|
242 |
+
model_labels = list(prediction_response.keys())
|
243 |
+
|
244 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
245 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
246 |
+
|
247 |
+
# when dataset does not have labels or features
|
248 |
+
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
249 |
+
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
|
250 |
+
return (
|
251 |
+
gr.update(visible=False),
|
252 |
+
gr.update(visible=False),
|
253 |
+
gr.update(visible=False, open=False),
|
254 |
+
gr.update(interactive=False),
|
255 |
+
"",
|
256 |
+
*dropdown_placement,
|
257 |
+
)
|
258 |
+
|
259 |
+
column_mappings = list_labels_and_features_from_dataset(
|
260 |
+
ds_labels,
|
261 |
+
ds_features,
|
262 |
+
model_labels,
|
263 |
+
uid,
|
264 |
+
)
|
265 |
+
|
266 |
+
# when labels or features are not aligned
|
267 |
+
# show manually column mapping
|
268 |
+
if (
|
269 |
+
collections.Counter(model_labels) != collections.Counter(ds_labels)
|
270 |
+
or ds_features[0] != "text"
|
271 |
+
):
|
272 |
+
return (
|
273 |
+
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
|
274 |
+
gr.update(visible=False),
|
275 |
+
gr.update(visible=True, open=True),
|
276 |
+
gr.update(interactive=(run_inference and inference_token != "")),
|
277 |
+
"",
|
278 |
+
*column_mappings,
|
279 |
+
)
|
280 |
+
|
281 |
+
return (
|
282 |
+
gr.update(value=get_styled_input(prediction_input), visible=True),
|
283 |
+
gr.update(value=prediction_response, visible=True),
|
284 |
+
gr.update(visible=True, open=False),
|
285 |
+
gr.update(interactive=(run_inference and inference_token != "")),
|
286 |
+
"",
|
287 |
+
*column_mappings,
|
288 |
+
)
|
289 |
+
|
290 |
+
|
291 |
+
def check_column_mapping_keys_validity(all_mappings):
|
292 |
+
if all_mappings is None:
|
293 |
+
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
294 |
+
return (gr.update(interactive=True), gr.update(visible=False))
|
295 |
+
|
296 |
+
if "labels" not in all_mappings.keys():
|
297 |
+
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
298 |
+
return (gr.update(interactive=True), gr.update(visible=False))
|
299 |
+
|
300 |
+
|
301 |
+
def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
|
302 |
+
label_mapping = {}
|
303 |
+
if len(all_mappings["labels"].keys()) != len(ds_labels):
|
304 |
+
gr.Warning("Label mapping corrupted: " + CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
305 |
+
|
306 |
+
if len(all_mappings["features"].keys()) != len(ds_features):
|
307 |
+
gr.Warning("Feature mapping corrupted: " + CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
308 |
+
|
309 |
+
for i, label in zip(range(len(ds_labels)), ds_labels):
|
310 |
+
# align the saved labels with dataset labels order
|
311 |
+
label_mapping.update({str(i): all_mappings["labels"][label]})
|
312 |
+
|
313 |
+
if "features" not in all_mappings.keys():
|
314 |
+
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
315 |
+
feature_mapping = all_mappings["features"]
|
316 |
+
return label_mapping, feature_mapping
|
317 |
+
|
318 |
+
|
319 |
+
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
|
320 |
+
all_mappings = read_column_mapping(uid)
|
321 |
+
check_column_mapping_keys_validity(all_mappings)
|
322 |
+
|
323 |
+
# get ds labels and features again for alignment
|
324 |
+
ds = datasets.load_dataset(d_id, config)[split]
|
325 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
326 |
+
label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features)
|
327 |
+
|
328 |
+
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
329 |
+
save_job_to_pipe(
|
330 |
+
uid,
|
331 |
+
(
|
332 |
+
m_id,
|
333 |
+
d_id,
|
334 |
+
config,
|
335 |
+
split,
|
336 |
+
inference,
|
337 |
+
inference_token,
|
338 |
+
uid,
|
339 |
+
label_mapping,
|
340 |
+
feature_mapping,
|
341 |
+
),
|
342 |
+
eval_str,
|
343 |
+
threading.Lock(),
|
344 |
+
)
|
345 |
+
gr.Info("Your evaluation has been submitted")
|
346 |
+
|
347 |
+
return (
|
348 |
+
gr.update(interactive=False), # Submit button
|
349 |
+
gr.update(lines=5, visible=True, interactive=False),
|
350 |
+
uuid.uuid4(), # Allocate a new uuid
|
351 |
+
)
|
tmp/.gitkeep
ADDED
File without changes
|
tmp/venvs/.gitkeep
ADDED
File without changes
|
utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import yaml
|
4 |
+
|
5 |
+
|
6 |
+
# read scanners from yaml file
|
7 |
+
# return a list of scanners
|
8 |
+
def read_scanners(path):
|
9 |
+
scanners = []
|
10 |
+
with open(path, "r") as f:
|
11 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
12 |
+
scanners = config.get("detectors", None)
|
13 |
+
return scanners
|
14 |
+
|
15 |
+
|
16 |
+
# convert a list of scanners to yaml file
|
17 |
+
def write_scanners(scanners):
|
18 |
+
with open("./scan_config.yaml", "w") as f:
|
19 |
+
# save scanners to detectors in yaml
|
20 |
+
yaml.dump({"detectors": scanners}, f)
|
21 |
+
|
22 |
+
|
23 |
+
# convert column mapping dataframe to json
|
24 |
+
def convert_column_mapping_to_json(df, label=""):
|
25 |
+
column_mapping = {}
|
26 |
+
column_mapping[label] = []
|
27 |
+
for _, row in df.iterrows():
|
28 |
+
column_mapping[label].append(row.tolist())
|
29 |
+
return column_mapping
|
validate_queue.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import time
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
def sleep_a_while():
|
8 |
+
seconds = random.randint(5, 10)
|
9 |
+
print(f"Working for {seconds} seconds")
|
10 |
+
start = time.time()
|
11 |
+
while start + seconds > time.time():
|
12 |
+
continue
|
13 |
+
return str(seconds)
|
14 |
+
|
15 |
+
|
16 |
+
with gr.Blocks() as iface:
|
17 |
+
text = gr.Textbox(label="Slept second")
|
18 |
+
|
19 |
+
run_btn = gr.Button("Run")
|
20 |
+
run_btn.click(sleep_a_while, queue=False, outputs=text, concurrency_limit=1)
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
iface.queue(max_size=2, default_concurrency_limit=2).launch()
|
wordings.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
INTRODUCTION_MD = """
|
2 |
+
<h1 style="text-align: center;">
|
3 |
+
🐢Giskard Evaluator
|
4 |
+
</h1>
|
5 |
+
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
|
6 |
+
"""
|
7 |
+
CONFIRM_MAPPING_DETAILS_MD = """
|
8 |
+
<h1 style="text-align: center;">
|
9 |
+
Confirm Pre-processing Details
|
10 |
+
</h1>
|
11 |
+
Please confirm the pre-processing details below. Align the column names of your model in the <b>dropdown</b> menu to your dataset's. If you are not sure, please double check your model and dataset.
|
12 |
+
"""
|
13 |
+
CONFIRM_MAPPING_DETAILS_FAIL_MD = """
|
14 |
+
<h1 style="text-align: center;">
|
15 |
+
Confirm Pre-processing Details
|
16 |
+
</h1>
|
17 |
+
Sorry, we cannot align the input/output of your dataset with the model. <b>Pleaser double check your model and dataset.</b>
|
18 |
+
"""
|
19 |
+
|
20 |
+
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
21 |
+
Sorry, we cannot align the input/output of your dataset with the model. Pleaser double check your model and dataset.
|
22 |
+
"""
|
23 |
+
|
24 |
+
CHECK_CONFIG_OR_SPLIT_RAW = """
|
25 |
+
Please check your dataset config or split.
|
26 |
+
"""
|
27 |
+
|
28 |
+
PREDICTION_SAMPLE_MD = """
|
29 |
+
<h1 style="text-align: center;">
|
30 |
+
Model Prediction Sample
|
31 |
+
</h1>
|
32 |
+
Here is a sample prediction from your model based on your dataset.
|
33 |
+
"""
|
34 |
+
|
35 |
+
MAPPING_STYLED_ERROR_WARNING = """
|
36 |
+
<h3 style="text-align: center;color: coral; background-color: #fff0f3; border-radius: 8px; padding: 10px; ">
|
37 |
+
Sorry, we cannot auto-align the labels/features of your dataset and model. Please double check.
|
38 |
+
</h3>
|
39 |
+
"""
|
40 |
+
|
41 |
+
NOT_TEXT_CLASSIFICATION_MODEL_RAW = """
|
42 |
+
Your model does not fall under the category of text classification. This page is specifically designated for the evaluation of text classification models.
|
43 |
+
"""
|
44 |
+
|
45 |
+
USE_INFERENCE_API_TIP = """
|
46 |
+
We recommend to use
|
47 |
+
<a href="https://huggingface.co/docs/api-inference/detailed_parameters#text-classification-task">
|
48 |
+
Hugging Face Inference API
|
49 |
+
</a>
|
50 |
+
for the evaluation,
|
51 |
+
which requires your <a href="https://huggingface.co/settings/tokens">HF token</a>.
|
52 |
+
<br/>
|
53 |
+
Otherwise, an
|
54 |
+
<a href="https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.TextClassificationPipeline">
|
55 |
+
HF pipeline
|
56 |
+
</a>
|
57 |
+
will be created and run in this Space. It takes more time to get the result.
|
58 |
+
<br/>
|
59 |
+
<b>
|
60 |
+
Do not worry, your HF token is only used in this Space for your evaluation.
|
61 |
+
</b>
|
62 |
+
"""
|
63 |
+
|
64 |
+
def get_styled_input(input):
|
65 |
+
return f"""<h3 style="text-align: center;color: #4ca154; background-color: #e2fbe8; border-radius: 8px; padding: 10px; ">
|
66 |
+
Sample input: {input}
|
67 |
+
</h3>"""
|