File size: 2,238 Bytes
d11e0fb 862e9b8 d11e0fb 2510381 d11e0fb 2510381 1445c42 2510381 1445c42 d11e0fb 862e9b8 d11e0fb aac31a5 862e9b8 141a346 d11e0fb 1445c42 d11e0fb 1445c42 d11e0fb 862e9b8 d11e0fb 1445c42 862e9b8 d11e0fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
license: mit
base_model: ZhangShenao/SELM-Zephyr-7B-iter-2
tags:
- alignment-handbook
- dpo
- trl
- selm
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: SELM-Zephyr-7B-iter-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[Self-Exploring Language Models: Active Preference Elicitation for Online Alignment](https://arxiv.org/abs/2405.19332).
# SELM-Zephyr-7B-iter-2
This model is a fine-tuned version of [ZhangShenao/SELM-Zephyr-7B-iter-1](https://huggingface.co/ZhangShenao/SELM-Zephyr-7B-iter-1) using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset.
## Model description
- Model type: A 7B parameter Zephyr-based Self-Exploring Language Models (SELM).
- License: MIT
## Results
| | AlpacaEval 2.0 (LC WR) | MT-Bench (Average) |
|----------------------------------------|------------------------|--------------------|
| [SELM-Zephyr-7B-iter-3](https://huggingface.co/ZhangShenao/SELM-Zephyr-7B-iter-3) |        24.00 |       7.48 |
| [SELM-Zephyr-7B-iter-2](https://huggingface.co/ZhangShenao/SELM-Zephyr-7B-iter-2) |        23.40 |       7.72 |
| [SELM-Zephyr-7B-iter-1](https://huggingface.co/ZhangShenao/SELM-Zephyr-7B-iter-1) |        20.28 |       7.42 |
| [DPO-Zephyr-7B](https://huggingface.co/ZhangShenao/DPO-Zephyr-7B) |        14.45 |       7.28 |
### Training hyperparameters
The following hyperparameters were used during training:
- alpha: 0.001
- beta: 0.01
- train_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- num_epochs: 1
### Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1
|