File size: 23,157 Bytes
2a41a22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os
from tqdm import tqdm
import cv2
import numpy as np
from scipy.ndimage import convolve, distance_transform_edt as bwdist
from skimage.morphology import skeletonize
from skimage.morphology import disk
from skimage.measure import label


_EPS = np.spacing(1)
_TYPE = np.float64


def evaluator(gt_paths, pred_paths, metrics=['S', 'MAE', 'E', 'F', 'WF', 'HCE'], verbose=False):
    # define measures
    if 'E' in metrics:
        EM = Emeasure()
    if 'S' in metrics:
        SM = Smeasure()
    if 'F' in metrics:
        FM = Fmeasure()
    if 'MAE' in metrics:
        MAE = MAEmeasure()
    if 'WF' in metrics:
        WFM = WeightedFmeasure()
    if 'HCE' in metrics:
        HCE = HCEMeasure()

    if isinstance(gt_paths, list) and isinstance(pred_paths, list):
        # print(len(gt_paths), len(pred_paths))
        assert len(gt_paths) == len(pred_paths)

    for idx_sample in tqdm(range(len(gt_paths)), total=len(gt_paths)) if verbose else range(len(gt_paths)):
        gt = gt_paths[idx_sample]
        pred = pred_paths[idx_sample]

        pred = pred[:-4] + '.png'
        if os.path.exists(pred):
            pred_ary = cv2.imread(pred, cv2.IMREAD_GRAYSCALE)
        else:
            pred_ary = cv2.imread(pred.replace('.png', '.jpg'), cv2.IMREAD_GRAYSCALE)
        gt_ary = cv2.imread(gt, cv2.IMREAD_GRAYSCALE)
        pred_ary = cv2.resize(pred_ary, (gt_ary.shape[1], gt_ary.shape[0]))

        if 'E' in metrics:
            EM.step(pred=pred_ary, gt=gt_ary)
        if 'S' in metrics:
            SM.step(pred=pred_ary, gt=gt_ary)
        if 'F' in metrics:
            FM.step(pred=pred_ary, gt=gt_ary)
        if 'MAE' in metrics:
            MAE.step(pred=pred_ary, gt=gt_ary)
        if 'WF' in metrics:
            WFM.step(pred=pred_ary, gt=gt_ary)
        if 'HCE' in metrics:
            ske_path = gt.replace('/gt/', '/ske/')
            if os.path.exists(ske_path):
                ske_ary = cv2.imread(ske_path, cv2.IMREAD_GRAYSCALE)
                ske_ary = ske_ary > 128
            else:
                ske_ary = skeletonize(gt_ary > 128)
                ske_save_dir = os.path.join(*ske_path.split(os.sep)[:-1])
                if ske_path[0] == os.sep:
                    ske_save_dir = os.sep + ske_save_dir
                os.makedirs(ske_save_dir, exist_ok=True)
                cv2.imwrite(ske_path, ske_ary.astype(np.uint8) * 255)
            HCE.step(pred=pred_ary, gt=gt_ary, gt_ske=ske_ary)

    if 'E' in metrics:
        em = EM.get_results()['em']
    else:
        em = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
    if 'S' in metrics:
        sm = SM.get_results()['sm']
    else:
        sm = np.float64(-1)
    if 'F' in metrics:
        fm = FM.get_results()['fm']
    else:
        fm = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
    if 'MAE' in metrics:
        mae = MAE.get_results()['mae']
    else:
        mae = np.float64(-1)
    if 'WF' in metrics:
        wfm = WFM.get_results()['wfm']
    else:
        wfm = np.float64(-1)
    if 'HCE' in metrics:
        hce = HCE.get_results()['hce']
    else:
        hce = np.float64(-1)

    return em, sm, fm, mae, wfm, hce


def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
    gt = gt > 128
    pred = pred / 255
    if pred.max() != pred.min():
        pred = (pred - pred.min()) / (pred.max() - pred.min())
    return pred, gt


def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
    return min(2 * matrix.mean(), max_value)


class Fmeasure(object):
    def __init__(self, beta: float = 0.3):
        self.beta = beta
        self.precisions = []
        self.recalls = []
        self.adaptive_fms = []
        self.changeable_fms = []

    def step(self, pred: np.ndarray, gt: np.ndarray):
        pred, gt = _prepare_data(pred, gt)

        adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
        self.adaptive_fms.append(adaptive_fm)

        precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
        self.precisions.append(precisions)
        self.recalls.append(recalls)
        self.changeable_fms.append(changeable_fms)

    def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
        adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
        binary_predcition = pred >= adaptive_threshold
        area_intersection = binary_predcition[gt].sum()
        if area_intersection == 0:
            adaptive_fm = 0
        else:
            pre = area_intersection / np.count_nonzero(binary_predcition)
            rec = area_intersection / np.count_nonzero(gt)
            adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
        return adaptive_fm

    def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
        pred = (pred * 255).astype(np.uint8)
        bins = np.linspace(0, 256, 257)
        fg_hist, _ = np.histogram(pred[gt], bins=bins)
        bg_hist, _ = np.histogram(pred[~gt], bins=bins)
        fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
        bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
        TPs = fg_w_thrs
        Ps = fg_w_thrs + bg_w_thrs
        Ps[Ps == 0] = 1
        T = max(np.count_nonzero(gt), 1)
        precisions = TPs / Ps
        recalls = TPs / T
        numerator = (1 + self.beta) * precisions * recalls
        denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
        changeable_fms = numerator / denominator
        return precisions, recalls, changeable_fms

    def get_results(self) -> dict:
        adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
        changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
        precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0)  # N, 256
        recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0)  # N, 256
        return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm),
                    pr=dict(p=precision, r=recall))


class MAEmeasure(object):
    def __init__(self):
        self.maes = []

    def step(self, pred: np.ndarray, gt: np.ndarray):
        pred, gt = _prepare_data(pred, gt)

        mae = self.cal_mae(pred, gt)
        self.maes.append(mae)

    def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float:
        mae = np.mean(np.abs(pred - gt))
        return mae

    def get_results(self) -> dict:
        mae = np.mean(np.array(self.maes, _TYPE))
        return dict(mae=mae)


class Smeasure(object):
    def __init__(self, alpha: float = 0.5):
        self.sms = []
        self.alpha = alpha

    def step(self, pred: np.ndarray, gt: np.ndarray):
        pred, gt = _prepare_data(pred=pred, gt=gt)

        sm = self.cal_sm(pred, gt)
        self.sms.append(sm)

    def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
        y = np.mean(gt)
        if y == 0:
            sm = 1 - np.mean(pred)
        elif y == 1:
            sm = np.mean(pred)
        else:
            sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
            sm = max(0, sm)
        return sm

    def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
        fg = pred * gt
        bg = (1 - pred) * (1 - gt)
        u = np.mean(gt)
        object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
        return object_score

    def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
        x = np.mean(pred[gt == 1])
        sigma_x = np.std(pred[gt == 1], ddof=1)
        score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
        return score

    def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
        x, y = self.centroid(gt)
        part_info = self.divide_with_xy(pred, gt, x, y)
        w1, w2, w3, w4 = part_info['weight']
        pred1, pred2, pred3, pred4 = part_info['pred']
        gt1, gt2, gt3, gt4 = part_info['gt']
        score1 = self.ssim(pred1, gt1)
        score2 = self.ssim(pred2, gt2)
        score3 = self.ssim(pred3, gt3)
        score4 = self.ssim(pred4, gt4)

        return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4

    def centroid(self, matrix: np.ndarray) -> tuple:
        h, w = matrix.shape
        area_object = np.count_nonzero(matrix)
        if area_object == 0:
            x = np.round(w / 2)
            y = np.round(h / 2)
        else:
            # More details can be found at: https://www.yuque.com/lart/blog/gpbigm
            y, x = np.argwhere(matrix).mean(axis=0).round()
        return int(x) + 1, int(y) + 1

    def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict:
        h, w = gt.shape
        area = h * w

        gt_LT = gt[0:y, 0:x]
        gt_RT = gt[0:y, x:w]
        gt_LB = gt[y:h, 0:x]
        gt_RB = gt[y:h, x:w]

        pred_LT = pred[0:y, 0:x]
        pred_RT = pred[0:y, x:w]
        pred_LB = pred[y:h, 0:x]
        pred_RB = pred[y:h, x:w]

        w1 = x * y / area
        w2 = y * (w - x) / area
        w3 = (h - y) * x / area
        w4 = 1 - w1 - w2 - w3

        return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB),
                    pred=(pred_LT, pred_RT, pred_LB, pred_RB),
                    weight=(w1, w2, w3, w4))

    def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
        h, w = pred.shape
        N = h * w

        x = np.mean(pred)
        y = np.mean(gt)

        sigma_x = np.sum((pred - x) ** 2) / (N - 1)
        sigma_y = np.sum((gt - y) ** 2) / (N - 1)
        sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)

        alpha = 4 * x * y * sigma_xy
        beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)

        if alpha != 0:
            score = alpha / (beta + _EPS)
        elif alpha == 0 and beta == 0:
            score = 1
        else:
            score = 0
        return score

    def get_results(self) -> dict:
        sm = np.mean(np.array(self.sms, dtype=_TYPE))
        return dict(sm=sm)


class Emeasure(object):
    def __init__(self):
        self.adaptive_ems = []
        self.changeable_ems = []

    def step(self, pred: np.ndarray, gt: np.ndarray):
        pred, gt = _prepare_data(pred=pred, gt=gt)
        self.gt_fg_numel = np.count_nonzero(gt)
        self.gt_size = gt.shape[0] * gt.shape[1]

        changeable_ems = self.cal_changeable_em(pred, gt)
        self.changeable_ems.append(changeable_ems)
        adaptive_em = self.cal_adaptive_em(pred, gt)
        self.adaptive_ems.append(adaptive_em)

    def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
        adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
        adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
        return adaptive_em

    def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
        changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
        return changeable_ems

    def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
        binarized_pred = pred >= threshold
        fg_fg_numel = np.count_nonzero(binarized_pred & gt)
        fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)

        fg___numel = fg_fg_numel + fg_bg_numel
        bg___numel = self.gt_size - fg___numel

        if self.gt_fg_numel == 0:
            enhanced_matrix_sum = bg___numel
        elif self.gt_fg_numel == self.gt_size:
            enhanced_matrix_sum = fg___numel
        else:
            parts_numel, combinations = self.generate_parts_numel_combinations(
                fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel,
                pred_fg_numel=fg___numel, pred_bg_numel=bg___numel,
            )

            results_parts = []
            for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
                align_matrix_value = 2 * (combination[0] * combination[1]) / \
                                     (combination[0] ** 2 + combination[1] ** 2 + _EPS)
                enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
                results_parts.append(enhanced_matrix_value * part_numel)
            enhanced_matrix_sum = sum(results_parts)

        em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
        return em

    def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
        pred = (pred * 255).astype(np.uint8)
        bins = np.linspace(0, 256, 257)
        fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
        fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
        fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
        fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)

        fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
        bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs

        if self.gt_fg_numel == 0:
            enhanced_matrix_sum = bg___numel_w_thrs
        elif self.gt_fg_numel == self.gt_size:
            enhanced_matrix_sum = fg___numel_w_thrs
        else:
            parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
                fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs,
                pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs,
            )

            results_parts = np.empty(shape=(4, 256), dtype=np.float64)
            for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
                align_matrix_value = 2 * (combination[0] * combination[1]) / \
                                     (combination[0] ** 2 + combination[1] ** 2 + _EPS)
                enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
                results_parts[i] = enhanced_matrix_value * part_numel
            enhanced_matrix_sum = results_parts.sum(axis=0)

        em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
        return em

    def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel):
        bg_fg_numel = self.gt_fg_numel - fg_fg_numel
        bg_bg_numel = pred_bg_numel - bg_fg_numel

        parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]

        mean_pred_value = pred_fg_numel / self.gt_size
        mean_gt_value = self.gt_fg_numel / self.gt_size

        demeaned_pred_fg_value = 1 - mean_pred_value
        demeaned_pred_bg_value = 0 - mean_pred_value
        demeaned_gt_fg_value = 1 - mean_gt_value
        demeaned_gt_bg_value = 0 - mean_gt_value

        combinations = [
            (demeaned_pred_fg_value, demeaned_gt_fg_value),
            (demeaned_pred_fg_value, demeaned_gt_bg_value),
            (demeaned_pred_bg_value, demeaned_gt_fg_value),
            (demeaned_pred_bg_value, demeaned_gt_bg_value)
        ]
        return parts_numel, combinations

    def get_results(self) -> dict:
        adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
        changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0)
        return dict(em=dict(adp=adaptive_em, curve=changeable_em))


class WeightedFmeasure(object):
    def __init__(self, beta: float = 1):
        self.beta = beta
        self.weighted_fms = []

    def step(self, pred: np.ndarray, gt: np.ndarray):
        pred, gt = _prepare_data(pred=pred, gt=gt)

        if np.all(~gt):
            wfm = 0
        else:
            wfm = self.cal_wfm(pred, gt)
        self.weighted_fms.append(wfm)

    def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
        # [Dst,IDXT] = bwdist(dGT);
        Dst, Idxt = bwdist(gt == 0, return_indices=True)

        # %Pixel dependency
        # E = abs(FG-dGT);
        E = np.abs(pred - gt)
        Et = np.copy(E)
        Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]

        # K = fspecial('gaussian',7,5);
        # EA = imfilter(Et,K);
        K = self.matlab_style_gauss2D((7, 7), sigma=5)
        EA = convolve(Et, weights=K, mode="constant", cval=0)
        # MIN_E_EA = E;
        # MIN_E_EA(GT & EA<E) = EA(GT & EA<E);
        MIN_E_EA = np.where(gt & (EA < E), EA, E)

        # %Pixel importance
        B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
        Ew = MIN_E_EA * B

        TPw = np.sum(gt) - np.sum(Ew[gt == 1])
        FPw = np.sum(Ew[gt == 0])


        R = 1 - np.mean(Ew[gt == 1])
        P = TPw / (TPw + FPw + _EPS)

        # % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P));
        Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)

        return Q

    def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
        """
        2D gaussian mask - should give the same result as MATLAB's
        fspecial('gaussian',[shape],[sigma])
        """
        m, n = [(ss - 1) / 2 for ss in shape]
        y, x = np.ogrid[-m: m + 1, -n: n + 1]
        h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
        h[h < np.finfo(h.dtype).eps * h.max()] = 0
        sumh = h.sum()
        if sumh != 0:
            h /= sumh
        return h

    def get_results(self) -> dict:
        weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
        return dict(wfm=weighted_fm)


class HCEMeasure(object):
    def __init__(self):
        self.hces = []

    def step(self, pred: np.ndarray, gt: np.ndarray, gt_ske):
        # pred, gt = _prepare_data(pred, gt)

        hce = self.cal_hce(pred, gt, gt_ske)
        self.hces.append(hce)

    def get_results(self) -> dict:
        hce = np.mean(np.array(self.hces, _TYPE))
        return dict(hce=hce)


    def cal_hce(self, pred: np.ndarray, gt: np.ndarray, gt_ske: np.ndarray, relax=5, epsilon=2.0) -> float:
        # Binarize gt
        if(len(gt.shape)>2):
            gt = gt[:, :, 0]

        epsilon_gt = 128#(np.amin(gt)+np.amax(gt))/2.0
        gt = (gt>epsilon_gt).astype(np.uint8)

        # Binarize pred
        if(len(pred.shape)>2):
            pred = pred[:, :, 0]
        epsilon_pred = 128#(np.amin(pred)+np.amax(pred))/2.0
        pred = (pred>epsilon_pred).astype(np.uint8)

        Union = np.logical_or(gt, pred)
        TP = np.logical_and(gt, pred)
        FP = pred - TP
        FN = gt - TP

        # relax the Union of gt and pred
        Union_erode = Union.copy()
        Union_erode = cv2.erode(Union_erode.astype(np.uint8), disk(1), iterations=relax)

        # --- get the relaxed False Positive regions for computing the human efforts in correcting them ---
        FP_ = np.logical_and(FP, Union_erode) # get the relaxed FP
        for i in range(0, relax):
            FP_ = cv2.dilate(FP_.astype(np.uint8), disk(1))
            FP_ = np.logical_and(FP_, 1-np.logical_or(TP, FN))
        FP_ = np.logical_and(FP, FP_)

        # --- get the relaxed False Negative regions for computing the human efforts in correcting them ---
        FN_ = np.logical_and(FN, Union_erode) # preserve the structural components of FN
        ## recover the FN, where pixels are not close to the TP borders
        for i in range(0, relax):
            FN_ = cv2.dilate(FN_.astype(np.uint8), disk(1))
            FN_ = np.logical_and(FN_, 1-np.logical_or(TP, FP))
        FN_ = np.logical_and(FN, FN_)
        FN_ = np.logical_or(FN_, np.logical_xor(gt_ske, np.logical_and(TP, gt_ske))) # preserve the structural components of FN

        ## 2. =============Find exact polygon control points and independent regions==============
        ## find contours from FP_
        ctrs_FP, hier_FP = cv2.findContours(FP_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
        ## find control points and independent regions for human correction
        bdies_FP, indep_cnt_FP = self.filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_))
        ## find contours from FN_
        ctrs_FN, hier_FN = cv2.findContours(FN_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
        ## find control points and independent regions for human correction
        bdies_FN, indep_cnt_FN = self.filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP, FP_), FN_))

        poly_FP, poly_FP_len, poly_FP_point_cnt = self.approximate_RDP(bdies_FP, epsilon=epsilon)
        poly_FN, poly_FN_len, poly_FN_point_cnt = self.approximate_RDP(bdies_FN, epsilon=epsilon)

        # FP_points+FP_indep+FN_points+FN_indep
        return poly_FP_point_cnt+indep_cnt_FP+poly_FN_point_cnt+indep_cnt_FN

    def filter_bdy_cond(self, bdy_, mask, cond):

        cond = cv2.dilate(cond.astype(np.uint8), disk(1))
        labels = label(mask) # find the connected regions
        lbls = np.unique(labels) # the indices of the connected regions
        indep = np.ones(lbls.shape[0]) # the label of each connected regions
        indep[0] = 0 # 0 indicate the background region

        boundaries = []
        h,w = cond.shape[0:2]
        ind_map = np.zeros((h, w))
        indep_cnt = 0

        for i in range(0, len(bdy_)):
            tmp_bdies = []
            tmp_bdy = []
            for j in range(0, bdy_[i].shape[0]):
                r, c = bdy_[i][j,0,1],bdy_[i][j,0,0]

                if(np.sum(cond[r, c])==0 or ind_map[r, c]!=0):
                    if(len(tmp_bdy)>0):
                        tmp_bdies.append(tmp_bdy)
                        tmp_bdy = []
                    continue
                tmp_bdy.append([c, r])
                ind_map[r, c] =  ind_map[r, c] + 1
                indep[labels[r, c]] = 0 # indicates part of the boundary of this region needs human correction
            if(len(tmp_bdy)>0):
                tmp_bdies.append(tmp_bdy)

            # check if the first and the last boundaries are connected
            # if yes, invert the first boundary and attach it after the last boundary
            if(len(tmp_bdies)>1):
                first_x, first_y = tmp_bdies[0][0]
                last_x, last_y = tmp_bdies[-1][-1]
                if((abs(first_x-last_x)==1 and first_y==last_y) or
                (first_x==last_x and abs(first_y-last_y)==1) or
                (abs(first_x-last_x)==1 and abs(first_y-last_y)==1)
                ):
                    tmp_bdies[-1].extend(tmp_bdies[0][::-1])
                    del tmp_bdies[0]

            for k in range(0, len(tmp_bdies)):
                tmp_bdies[k] =  np.array(tmp_bdies[k])[:, np.newaxis, :]
            if(len(tmp_bdies)>0):
                boundaries.extend(tmp_bdies)

        return boundaries, np.sum(indep)

    # this function approximate each boundary by DP algorithm
    # https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
    def approximate_RDP(self, boundaries, epsilon=1.0):

        boundaries_ = []
        boundaries_len_ = []
        pixel_cnt_ = 0

        # polygon approximate of each boundary
        for i in range(0, len(boundaries)):
            boundaries_.append(cv2.approxPolyDP(boundaries[i], epsilon, False))

        # count the control points number of each boundary and the total control points number of all the boundaries
        for i in range(0, len(boundaries_)):
            boundaries_len_.append(len(boundaries_[i]))
            pixel_cnt_ = pixel_cnt_ + len(boundaries_[i])

        return boundaries_, boundaries_len_, pixel_cnt_