File size: 23,157 Bytes
2a41a22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
import os
from tqdm import tqdm
import cv2
import numpy as np
from scipy.ndimage import convolve, distance_transform_edt as bwdist
from skimage.morphology import skeletonize
from skimage.morphology import disk
from skimage.measure import label
_EPS = np.spacing(1)
_TYPE = np.float64
def evaluator(gt_paths, pred_paths, metrics=['S', 'MAE', 'E', 'F', 'WF', 'HCE'], verbose=False):
# define measures
if 'E' in metrics:
EM = Emeasure()
if 'S' in metrics:
SM = Smeasure()
if 'F' in metrics:
FM = Fmeasure()
if 'MAE' in metrics:
MAE = MAEmeasure()
if 'WF' in metrics:
WFM = WeightedFmeasure()
if 'HCE' in metrics:
HCE = HCEMeasure()
if isinstance(gt_paths, list) and isinstance(pred_paths, list):
# print(len(gt_paths), len(pred_paths))
assert len(gt_paths) == len(pred_paths)
for idx_sample in tqdm(range(len(gt_paths)), total=len(gt_paths)) if verbose else range(len(gt_paths)):
gt = gt_paths[idx_sample]
pred = pred_paths[idx_sample]
pred = pred[:-4] + '.png'
if os.path.exists(pred):
pred_ary = cv2.imread(pred, cv2.IMREAD_GRAYSCALE)
else:
pred_ary = cv2.imread(pred.replace('.png', '.jpg'), cv2.IMREAD_GRAYSCALE)
gt_ary = cv2.imread(gt, cv2.IMREAD_GRAYSCALE)
pred_ary = cv2.resize(pred_ary, (gt_ary.shape[1], gt_ary.shape[0]))
if 'E' in metrics:
EM.step(pred=pred_ary, gt=gt_ary)
if 'S' in metrics:
SM.step(pred=pred_ary, gt=gt_ary)
if 'F' in metrics:
FM.step(pred=pred_ary, gt=gt_ary)
if 'MAE' in metrics:
MAE.step(pred=pred_ary, gt=gt_ary)
if 'WF' in metrics:
WFM.step(pred=pred_ary, gt=gt_ary)
if 'HCE' in metrics:
ske_path = gt.replace('/gt/', '/ske/')
if os.path.exists(ske_path):
ske_ary = cv2.imread(ske_path, cv2.IMREAD_GRAYSCALE)
ske_ary = ske_ary > 128
else:
ske_ary = skeletonize(gt_ary > 128)
ske_save_dir = os.path.join(*ske_path.split(os.sep)[:-1])
if ske_path[0] == os.sep:
ske_save_dir = os.sep + ske_save_dir
os.makedirs(ske_save_dir, exist_ok=True)
cv2.imwrite(ske_path, ske_ary.astype(np.uint8) * 255)
HCE.step(pred=pred_ary, gt=gt_ary, gt_ske=ske_ary)
if 'E' in metrics:
em = EM.get_results()['em']
else:
em = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
if 'S' in metrics:
sm = SM.get_results()['sm']
else:
sm = np.float64(-1)
if 'F' in metrics:
fm = FM.get_results()['fm']
else:
fm = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
if 'MAE' in metrics:
mae = MAE.get_results()['mae']
else:
mae = np.float64(-1)
if 'WF' in metrics:
wfm = WFM.get_results()['wfm']
else:
wfm = np.float64(-1)
if 'HCE' in metrics:
hce = HCE.get_results()['hce']
else:
hce = np.float64(-1)
return em, sm, fm, mae, wfm, hce
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
gt = gt > 128
pred = pred / 255
if pred.max() != pred.min():
pred = (pred - pred.min()) / (pred.max() - pred.min())
return pred, gt
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
return min(2 * matrix.mean(), max_value)
class Fmeasure(object):
def __init__(self, beta: float = 0.3):
self.beta = beta
self.precisions = []
self.recalls = []
self.adaptive_fms = []
self.changeable_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
self.adaptive_fms.append(adaptive_fm)
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
self.precisions.append(precisions)
self.recalls.append(recalls)
self.changeable_fms.append(changeable_fms)
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
binary_predcition = pred >= adaptive_threshold
area_intersection = binary_predcition[gt].sum()
if area_intersection == 0:
adaptive_fm = 0
else:
pre = area_intersection / np.count_nonzero(binary_predcition)
rec = area_intersection / np.count_nonzero(gt)
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
return adaptive_fm
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins)
bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
precisions = TPs / Ps
recalls = TPs / T
numerator = (1 + self.beta) * precisions * recalls
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
changeable_fms = numerator / denominator
return precisions, recalls, changeable_fms
def get_results(self) -> dict:
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm),
pr=dict(p=precision, r=recall))
class MAEmeasure(object):
def __init__(self):
self.maes = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
mae = self.cal_mae(pred, gt)
self.maes.append(mae)
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float:
mae = np.mean(np.abs(pred - gt))
return mae
def get_results(self) -> dict:
mae = np.mean(np.array(self.maes, _TYPE))
return dict(mae=mae)
class Smeasure(object):
def __init__(self, alpha: float = 0.5):
self.sms = []
self.alpha = alpha
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
sm = self.cal_sm(pred, gt)
self.sms.append(sm)
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
y = np.mean(gt)
if y == 0:
sm = 1 - np.mean(pred)
elif y == 1:
sm = np.mean(pred)
else:
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
sm = max(0, sm)
return sm
def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
fg = pred * gt
bg = (1 - pred) * (1 - gt)
u = np.mean(gt)
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
return object_score
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
x = np.mean(pred[gt == 1])
sigma_x = np.std(pred[gt == 1], ddof=1)
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
return score
def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
x, y = self.centroid(gt)
part_info = self.divide_with_xy(pred, gt, x, y)
w1, w2, w3, w4 = part_info['weight']
pred1, pred2, pred3, pred4 = part_info['pred']
gt1, gt2, gt3, gt4 = part_info['gt']
score1 = self.ssim(pred1, gt1)
score2 = self.ssim(pred2, gt2)
score3 = self.ssim(pred3, gt3)
score4 = self.ssim(pred4, gt4)
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4
def centroid(self, matrix: np.ndarray) -> tuple:
h, w = matrix.shape
area_object = np.count_nonzero(matrix)
if area_object == 0:
x = np.round(w / 2)
y = np.round(h / 2)
else:
# More details can be found at: https://www.yuque.com/lart/blog/gpbigm
y, x = np.argwhere(matrix).mean(axis=0).round()
return int(x) + 1, int(y) + 1
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict:
h, w = gt.shape
area = h * w
gt_LT = gt[0:y, 0:x]
gt_RT = gt[0:y, x:w]
gt_LB = gt[y:h, 0:x]
gt_RB = gt[y:h, x:w]
pred_LT = pred[0:y, 0:x]
pred_RT = pred[0:y, x:w]
pred_LB = pred[y:h, 0:x]
pred_RB = pred[y:h, x:w]
w1 = x * y / area
w2 = y * (w - x) / area
w3 = (h - y) * x / area
w4 = 1 - w1 - w2 - w3
return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB),
pred=(pred_LT, pred_RT, pred_LB, pred_RB),
weight=(w1, w2, w3, w4))
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
h, w = pred.shape
N = h * w
x = np.mean(pred)
y = np.mean(gt)
sigma_x = np.sum((pred - x) ** 2) / (N - 1)
sigma_y = np.sum((gt - y) ** 2) / (N - 1)
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)
alpha = 4 * x * y * sigma_xy
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)
if alpha != 0:
score = alpha / (beta + _EPS)
elif alpha == 0 and beta == 0:
score = 1
else:
score = 0
return score
def get_results(self) -> dict:
sm = np.mean(np.array(self.sms, dtype=_TYPE))
return dict(sm=sm)
class Emeasure(object):
def __init__(self):
self.adaptive_ems = []
self.changeable_ems = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
self.gt_fg_numel = np.count_nonzero(gt)
self.gt_size = gt.shape[0] * gt.shape[1]
changeable_ems = self.cal_changeable_em(pred, gt)
self.changeable_ems.append(changeable_ems)
adaptive_em = self.cal_adaptive_em(pred, gt)
self.adaptive_ems.append(adaptive_em)
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
return adaptive_em
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
return changeable_ems
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
binarized_pred = pred >= threshold
fg_fg_numel = np.count_nonzero(binarized_pred & gt)
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)
fg___numel = fg_fg_numel + fg_bg_numel
bg___numel = self.gt_size - fg___numel
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel
else:
parts_numel, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel,
pred_fg_numel=fg___numel, pred_bg_numel=bg___numel,
)
results_parts = []
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
align_matrix_value = 2 * (combination[0] * combination[1]) / \
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts.append(enhanced_matrix_value * part_numel)
enhanced_matrix_sum = sum(results_parts)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel_w_thrs
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel_w_thrs
else:
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs,
pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs,
)
results_parts = np.empty(shape=(4, 256), dtype=np.float64)
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
align_matrix_value = 2 * (combination[0] * combination[1]) / \
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts[i] = enhanced_matrix_value * part_numel
enhanced_matrix_sum = results_parts.sum(axis=0)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel):
bg_fg_numel = self.gt_fg_numel - fg_fg_numel
bg_bg_numel = pred_bg_numel - bg_fg_numel
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]
mean_pred_value = pred_fg_numel / self.gt_size
mean_gt_value = self.gt_fg_numel / self.gt_size
demeaned_pred_fg_value = 1 - mean_pred_value
demeaned_pred_bg_value = 0 - mean_pred_value
demeaned_gt_fg_value = 1 - mean_gt_value
demeaned_gt_bg_value = 0 - mean_gt_value
combinations = [
(demeaned_pred_fg_value, demeaned_gt_fg_value),
(demeaned_pred_fg_value, demeaned_gt_bg_value),
(demeaned_pred_bg_value, demeaned_gt_fg_value),
(demeaned_pred_bg_value, demeaned_gt_bg_value)
]
return parts_numel, combinations
def get_results(self) -> dict:
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0)
return dict(em=dict(adp=adaptive_em, curve=changeable_em))
class WeightedFmeasure(object):
def __init__(self, beta: float = 1):
self.beta = beta
self.weighted_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
if np.all(~gt):
wfm = 0
else:
wfm = self.cal_wfm(pred, gt)
self.weighted_fms.append(wfm)
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
# [Dst,IDXT] = bwdist(dGT);
Dst, Idxt = bwdist(gt == 0, return_indices=True)
# %Pixel dependency
# E = abs(FG-dGT);
E = np.abs(pred - gt)
Et = np.copy(E)
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]
# K = fspecial('gaussian',7,5);
# EA = imfilter(Et,K);
K = self.matlab_style_gauss2D((7, 7), sigma=5)
EA = convolve(Et, weights=K, mode="constant", cval=0)
# MIN_E_EA = E;
# MIN_E_EA(GT & EA<E) = EA(GT & EA<E);
MIN_E_EA = np.where(gt & (EA < E), EA, E)
# %Pixel importance
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
Ew = MIN_E_EA * B
TPw = np.sum(gt) - np.sum(Ew[gt == 1])
FPw = np.sum(Ew[gt == 0])
R = 1 - np.mean(Ew[gt == 1])
P = TPw / (TPw + FPw + _EPS)
# % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P));
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)
return Q
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('gaussian',[shape],[sigma])
"""
m, n = [(ss - 1) / 2 for ss in shape]
y, x = np.ogrid[-m: m + 1, -n: n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def get_results(self) -> dict:
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
return dict(wfm=weighted_fm)
class HCEMeasure(object):
def __init__(self):
self.hces = []
def step(self, pred: np.ndarray, gt: np.ndarray, gt_ske):
# pred, gt = _prepare_data(pred, gt)
hce = self.cal_hce(pred, gt, gt_ske)
self.hces.append(hce)
def get_results(self) -> dict:
hce = np.mean(np.array(self.hces, _TYPE))
return dict(hce=hce)
def cal_hce(self, pred: np.ndarray, gt: np.ndarray, gt_ske: np.ndarray, relax=5, epsilon=2.0) -> float:
# Binarize gt
if(len(gt.shape)>2):
gt = gt[:, :, 0]
epsilon_gt = 128#(np.amin(gt)+np.amax(gt))/2.0
gt = (gt>epsilon_gt).astype(np.uint8)
# Binarize pred
if(len(pred.shape)>2):
pred = pred[:, :, 0]
epsilon_pred = 128#(np.amin(pred)+np.amax(pred))/2.0
pred = (pred>epsilon_pred).astype(np.uint8)
Union = np.logical_or(gt, pred)
TP = np.logical_and(gt, pred)
FP = pred - TP
FN = gt - TP
# relax the Union of gt and pred
Union_erode = Union.copy()
Union_erode = cv2.erode(Union_erode.astype(np.uint8), disk(1), iterations=relax)
# --- get the relaxed False Positive regions for computing the human efforts in correcting them ---
FP_ = np.logical_and(FP, Union_erode) # get the relaxed FP
for i in range(0, relax):
FP_ = cv2.dilate(FP_.astype(np.uint8), disk(1))
FP_ = np.logical_and(FP_, 1-np.logical_or(TP, FN))
FP_ = np.logical_and(FP, FP_)
# --- get the relaxed False Negative regions for computing the human efforts in correcting them ---
FN_ = np.logical_and(FN, Union_erode) # preserve the structural components of FN
## recover the FN, where pixels are not close to the TP borders
for i in range(0, relax):
FN_ = cv2.dilate(FN_.astype(np.uint8), disk(1))
FN_ = np.logical_and(FN_, 1-np.logical_or(TP, FP))
FN_ = np.logical_and(FN, FN_)
FN_ = np.logical_or(FN_, np.logical_xor(gt_ske, np.logical_and(TP, gt_ske))) # preserve the structural components of FN
## 2. =============Find exact polygon control points and independent regions==============
## find contours from FP_
ctrs_FP, hier_FP = cv2.findContours(FP_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
## find control points and independent regions for human correction
bdies_FP, indep_cnt_FP = self.filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_))
## find contours from FN_
ctrs_FN, hier_FN = cv2.findContours(FN_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
## find control points and independent regions for human correction
bdies_FN, indep_cnt_FN = self.filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP, FP_), FN_))
poly_FP, poly_FP_len, poly_FP_point_cnt = self.approximate_RDP(bdies_FP, epsilon=epsilon)
poly_FN, poly_FN_len, poly_FN_point_cnt = self.approximate_RDP(bdies_FN, epsilon=epsilon)
# FP_points+FP_indep+FN_points+FN_indep
return poly_FP_point_cnt+indep_cnt_FP+poly_FN_point_cnt+indep_cnt_FN
def filter_bdy_cond(self, bdy_, mask, cond):
cond = cv2.dilate(cond.astype(np.uint8), disk(1))
labels = label(mask) # find the connected regions
lbls = np.unique(labels) # the indices of the connected regions
indep = np.ones(lbls.shape[0]) # the label of each connected regions
indep[0] = 0 # 0 indicate the background region
boundaries = []
h,w = cond.shape[0:2]
ind_map = np.zeros((h, w))
indep_cnt = 0
for i in range(0, len(bdy_)):
tmp_bdies = []
tmp_bdy = []
for j in range(0, bdy_[i].shape[0]):
r, c = bdy_[i][j,0,1],bdy_[i][j,0,0]
if(np.sum(cond[r, c])==0 or ind_map[r, c]!=0):
if(len(tmp_bdy)>0):
tmp_bdies.append(tmp_bdy)
tmp_bdy = []
continue
tmp_bdy.append([c, r])
ind_map[r, c] = ind_map[r, c] + 1
indep[labels[r, c]] = 0 # indicates part of the boundary of this region needs human correction
if(len(tmp_bdy)>0):
tmp_bdies.append(tmp_bdy)
# check if the first and the last boundaries are connected
# if yes, invert the first boundary and attach it after the last boundary
if(len(tmp_bdies)>1):
first_x, first_y = tmp_bdies[0][0]
last_x, last_y = tmp_bdies[-1][-1]
if((abs(first_x-last_x)==1 and first_y==last_y) or
(first_x==last_x and abs(first_y-last_y)==1) or
(abs(first_x-last_x)==1 and abs(first_y-last_y)==1)
):
tmp_bdies[-1].extend(tmp_bdies[0][::-1])
del tmp_bdies[0]
for k in range(0, len(tmp_bdies)):
tmp_bdies[k] = np.array(tmp_bdies[k])[:, np.newaxis, :]
if(len(tmp_bdies)>0):
boundaries.extend(tmp_bdies)
return boundaries, np.sum(indep)
# this function approximate each boundary by DP algorithm
# https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
def approximate_RDP(self, boundaries, epsilon=1.0):
boundaries_ = []
boundaries_len_ = []
pixel_cnt_ = 0
# polygon approximate of each boundary
for i in range(0, len(boundaries)):
boundaries_.append(cv2.approxPolyDP(boundaries[i], epsilon, False))
# count the control points number of each boundary and the total control points number of all the boundaries
for i in range(0, len(boundaries_)):
boundaries_len_.append(len(boundaries_[i]))
pixel_cnt_ = pixel_cnt_ + len(boundaries_[i])
return boundaries_, boundaries_len_, pixel_cnt_
|