|
import os |
|
import argparse |
|
from glob import glob |
|
from tqdm import tqdm |
|
import cv2 |
|
import torch |
|
|
|
from dataset import MyData |
|
from models.birefnet import BiRefNet |
|
from utils import save_tensor_img, check_state_dict |
|
from config import Config |
|
|
|
|
|
config = Config() |
|
|
|
|
|
def inference(model, data_loader_test, pred_root, method, testset, device=0): |
|
model_training = model.training |
|
if model_training: |
|
model.eval() |
|
for batch in tqdm(data_loader_test, total=len(data_loader_test)) if 1 or config.verbose_eval else data_loader_test: |
|
inputs = batch[0].to(device) |
|
|
|
label_paths = batch[-1] |
|
with torch.no_grad(): |
|
scaled_preds = model(inputs)[-1].sigmoid() |
|
|
|
os.makedirs(os.path.join(pred_root, method, testset), exist_ok=True) |
|
|
|
for idx_sample in range(scaled_preds.shape[0]): |
|
res = torch.nn.functional.interpolate( |
|
scaled_preds[idx_sample].unsqueeze(0), |
|
size=cv2.imread(label_paths[idx_sample], cv2.IMREAD_GRAYSCALE).shape[:2], |
|
mode='bilinear', |
|
align_corners=True |
|
) |
|
save_tensor_img(res, os.path.join(os.path.join(pred_root, method, testset), label_paths[idx_sample].replace('\\', '/').split('/')[-1])) |
|
if model_training: |
|
model.train() |
|
return None |
|
|
|
|
|
def main(args): |
|
|
|
|
|
device = config.device |
|
if args.ckpt_folder: |
|
print('Testing with models in {}'.format(args.ckpt_folder)) |
|
else: |
|
print('Testing with model {}'.format(args.ckpt)) |
|
|
|
if config.model == 'BiRefNet': |
|
model = BiRefNet(bb_pretrained=False) |
|
weights_lst = sorted( |
|
glob(os.path.join(args.ckpt_folder, '*.pth')) if args.ckpt_folder else [args.ckpt], |
|
key=lambda x: int(x.split('epoch_')[-1].split('.pth')[0]), |
|
reverse=True |
|
) |
|
for testset in args.testsets.split('+'): |
|
print('>>>> Testset: {}...'.format(testset)) |
|
data_loader_test = torch.utils.data.DataLoader( |
|
dataset=MyData(testset, image_size=config.size, is_train=False), |
|
batch_size=config.batch_size_valid, shuffle=False, num_workers=config.num_workers, pin_memory=True |
|
) |
|
for weights in weights_lst: |
|
if int(weights.strip('.pth').split('epoch_')[-1]) % 1 != 0: |
|
continue |
|
print('\tInferencing {}...'.format(weights)) |
|
|
|
state_dict = torch.load(weights, map_location='cpu') |
|
state_dict = check_state_dict(state_dict) |
|
model.load_state_dict(state_dict) |
|
model = model.to(device) |
|
inference( |
|
model, data_loader_test=data_loader_test, pred_root=args.pred_root, |
|
method='--'.join([w.rstrip('.pth') for w in weights.split(os.sep)[-2:]]), |
|
testset=testset, device=config.device |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(description='') |
|
parser.add_argument('--ckpt', type=str, help='model folder') |
|
parser.add_argument('--ckpt_folder', default=sorted(glob(os.path.join('ckpt', '*')))[-1], type=str, help='model folder') |
|
parser.add_argument('--pred_root', default='e_preds', type=str, help='Output folder') |
|
parser.add_argument('--testsets', |
|
default={ |
|
'DIS5K': 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', |
|
'COD': 'TE-COD10K+NC4K+TE-CAMO+CHAMELEON', |
|
'HRSOD': 'DAVIS-S+TE-HRSOD+TE-UHRSD+TE-DUTS+DUT-OMRON', |
|
'DIS5K+HRSOD+HRS10K': 'DIS-VD', |
|
'P3M-10k': 'TE-P3M-500-P+TE-P3M-500-NP', |
|
'DIS5K-': 'DIS-VD', |
|
'COD-': 'TE-COD10K', |
|
'SOD-': 'DAVIS-S+TE-HRSOD+TE-UHRSD', |
|
}[config.task + ''], |
|
type=str, |
|
help="Test all sets: , 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'") |
|
|
|
args = parser.parse_args() |
|
|
|
if config.precisionHigh: |
|
torch.set_float32_matmul_precision('high') |
|
main(args) |
|
|