|
import os |
|
import cv2 |
|
from tqdm import tqdm |
|
from PIL import Image |
|
from torch.utils import data |
|
from torchvision import transforms |
|
|
|
from preproc import preproc |
|
from config import Config |
|
from utils import path_to_image |
|
|
|
|
|
Image.MAX_IMAGE_PIXELS = None |
|
config = Config() |
|
_class_labels_TR_sorted = ( |
|
'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, ' |
|
'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, ' |
|
'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, ' |
|
'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, ' |
|
'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, ' |
|
'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, ' |
|
'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, ' |
|
'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, ' |
|
'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, ' |
|
'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, ' |
|
'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, ' |
|
'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, ' |
|
'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, ' |
|
'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht' |
|
) |
|
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ') |
|
|
|
|
|
class MyData(data.Dataset): |
|
def __init__(self, datasets, image_size, is_train=True): |
|
self.size_train = image_size |
|
self.size_test = image_size |
|
self.keep_size = not config.size |
|
self.data_size = (config.size, config.size) |
|
self.is_train = is_train |
|
self.load_all = config.load_all |
|
self.device = config.device |
|
if self.is_train and config.auxiliary_classification: |
|
self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)} |
|
self.transform_image = transforms.Compose([ |
|
transforms.Resize(self.data_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
][self.load_all or self.keep_size:]) |
|
self.transform_label = transforms.Compose([ |
|
transforms.Resize(self.data_size), |
|
transforms.ToTensor(), |
|
][self.load_all or self.keep_size:]) |
|
dataset_root = os.path.join(config.data_root_dir, config.task) |
|
|
|
self.image_paths = [] |
|
for dataset in datasets.split('+'): |
|
image_root = os.path.join(dataset_root, dataset, 'im') |
|
self.image_paths += [os.path.join(image_root, p) for p in os.listdir(image_root)] |
|
self.label_paths = [] |
|
for p in self.image_paths: |
|
for ext in ['.png', '.jpg', '.PNG', '.JPG', '.JPEG']: |
|
|
|
p_gt = p.replace('/im/', '/gt/')[:-(len(p.split('.')[-1])+1)] + ext |
|
file_exists = False |
|
if os.path.exists(p_gt): |
|
self.label_paths.append(p_gt) |
|
file_exists = True |
|
break |
|
if not file_exists: |
|
print('Not exists:', p_gt) |
|
if self.load_all: |
|
self.images_loaded, self.labels_loaded = [], [] |
|
self.class_labels_loaded = [] |
|
|
|
for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)): |
|
_image = path_to_image(image_path, size=(config.size, config.size), color_type='rgb') |
|
_label = path_to_image(label_path, size=(config.size, config.size), color_type='gray') |
|
self.images_loaded.append(_image) |
|
self.labels_loaded.append(_label) |
|
self.class_labels_loaded.append( |
|
self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1 |
|
) |
|
|
|
def __getitem__(self, index): |
|
|
|
if self.load_all: |
|
image = self.images_loaded[index] |
|
label = self.labels_loaded[index] |
|
class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1 |
|
else: |
|
image = path_to_image(self.image_paths[index], size=(config.size, config.size), color_type='rgb') |
|
label = path_to_image(self.label_paths[index], size=(config.size, config.size), color_type='gray') |
|
class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1 |
|
|
|
|
|
if self.is_train: |
|
image, label = preproc(image, label, preproc_methods=config.preproc_methods) |
|
|
|
|
|
|
|
|
|
|
|
image, label = self.transform_image(image), self.transform_label(label) |
|
|
|
if self.is_train: |
|
return image, label, class_label |
|
else: |
|
return image, label, self.label_paths[index] |
|
|
|
def __len__(self): |
|
return len(self.image_paths) |
|
|