File size: 2,494 Bytes
47689f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f8ea8
47689f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f8ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47689f2
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: bigcode-openrail-m
library_name: peft
tags:
- generated_from_trainer
base_model: bigcode/starcoderbase-1b
model-index:
- name: peft-lora-starcoder1B-Instruction-ny8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# peft-lora-starcoder1B-Instruction-ny8

This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7359

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2429        | 0.05  | 100  | 0.2525          |
| 0.2099        | 0.1   | 200  | 0.2812          |
| 0.0957        | 0.15  | 300  | 0.4394          |
| 0.0277        | 0.2   | 400  | 0.5758          |
| 0.015         | 0.25  | 500  | 0.6307          |
| 0.0144        | 0.3   | 600  | 0.6582          |
| 0.0122        | 0.35  | 700  | 0.6811          |
| 0.0105        | 0.4   | 800  | 0.6984          |
| 0.0116        | 0.45  | 900  | 0.7030          |
| 0.0101        | 0.5   | 1000 | 0.7078          |
| 0.0097        | 0.55  | 1100 | 0.7047          |
| 0.0091        | 0.6   | 1200 | 0.7144          |
| 0.0087        | 0.65  | 1300 | 0.7196          |
| 0.0075        | 0.7   | 1400 | 0.7318          |
| 0.0082        | 0.75  | 1500 | 0.7242          |
| 0.008         | 0.8   | 1600 | 0.7289          |
| 0.0078        | 0.85  | 1700 | 0.7322          |
| 0.0074        | 0.9   | 1800 | 0.7398          |
| 0.0075        | 0.95  | 1900 | 0.7349          |
| 0.0073        | 1.0   | 2000 | 0.7359          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0