--- license: mit datasets: - AGBonnet/augmented-clinical-notes language: - en base_model: - BioMistral/BioMistral-7B pipeline_tag: text-generation tags: - clinical - biology --- # Model Card for Model ID ## How to use Loading the model from Hunggingface: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("ZiweiChen/BioMistral-Clinical-7B") model = AutoModelForCausalLM.from_pretrained("ZiweiChen/BioMistral-Clinical-7B") ``` Lightweight model loading can be used - using 4-bit quantization! ```python !pip install -q -U bitsandbytes !pip install -q -U git+https://github.com/huggingface/transformers.git !pip install -q -U git+https://github.com/huggingface/peft.git !pip install -q -U git+https://github.com/huggingface/accelerate.git from transformers import AutoTokenizer, BitsAndBytesConfig, AutoModelForCausalLM import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained("ZiweiChen/BioMistral-Clinical-7B") model = AutoModelForCausalLM.from_pretrained("ZiweiChen/BioMistral-Clinical-7B", quantization_config=bnb_config) ``` How to Generate text: ```python model_device = next(model.parameters()).device prompt = """ ### Question: How to treat severe obesity? ### Answer: """ model_input = tokenizer(prompt, return_tensors="pt").to(model_device) with torch.no_grad(): output = model.generate(**model_input, max_new_tokens=100) answer = tokenizer.decode(output[0], skip_special_tokens=True) print(answer) ``` ## Model Details ### Model Description