File size: 1,236 Bytes
b8cc581 1da6001 b8cc581 0e27116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
---
license: cc-by-nc-4.0
language:
- gsw
- multilingual
widget:
- text: "I cha etz au Schwiizerdütsch. <mask> zäme! 😊"
---
The [**xlm-roberta-base**](https://huggingface.co/xlm-roberta-base) model ([Conneau et al., ACL 2020](https://aclanthology.org/2020.acl-main.747/)) trained on Swiss German text data via continued pre-training.
## Training Data
For continued pre-training, we used the following two datasets of written Swiss German:
1. [SwissCrawl](https://icosys.ch/swisscrawl) ([Linder et al., LREC 2020](https://aclanthology.org/2020.lrec-1.329)), a collection of Swiss German web text (forum discussions, social media).
2. A custom dataset of Swiss German tweets
In addition, we trained the model on an equal amount of Standard German data. We used news articles retrieved from [Swissdox@LiRI](https://t.uzh.ch/1hI).
## License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
## Citation
```bibtex
@inproceedings{vamvas-etal-2024-modular,
title={Modular Adaptation of Multilingual Encoders to Written Swiss German Dialect},
author={Jannis Vamvas and No{\"e}mi Aepli and Rico Sennrich},
booktitle={First Workshop on Modular and Open Multilingual NLP},
year={2024},
}
``` |