--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_irony_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.6610606215436072 --- # presentation_irony_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.3749 - F1: 0.6611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.623266809785401e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5456 | 1.0 | 179 | 0.6118 | 0.6654 | | 0.4 | 2.0 | 358 | 0.6933 | 0.6453 | | 0.0957 | 3.0 | 537 | 0.9969 | 0.6299 | | 0.0483 | 4.0 | 716 | 1.3749 | 0.6611 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3