File size: 18,306 Bytes
1c60e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5e32d010-11d0-4be3-a34f-00c87d369347",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[31mERROR: responses 0.18.0 has requirement urllib3>=1.25.10, but you'll have urllib3 1.25.8 which is incompatible.\u001b[0m\n",
      "\u001b[33m  WARNING: The script plasma_store is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
      "\u001b[33m  WARNING: The script huggingface-cli is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
      "\u001b[33m  WARNING: The script datasets-cli is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
      "\u001b[33m  WARNING: The scripts accelerate, accelerate-config and accelerate-launch are installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
      "\u001b[31mERROR: torchaudio 0.10.1+rocm4.1 has requirement torch==1.10.1, but you'll have torch 2.0.0 which is incompatible.\u001b[0m\n",
      "\u001b[31mERROR: torchvision 0.11.2+cu111 has requirement torch==1.10.1, but you'll have torch 2.0.0 which is incompatible.\u001b[0m\n",
      "\u001b[33m  WARNING: The script transformers-cli is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
      "\u001b[33m  WARNING: The script isympy is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
      "\u001b[33m  WARNING: The scripts cmake, cpack and ctest are installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
      "\u001b[33m  WARNING: The script lit is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
      "\u001b[33m  WARNING: The scripts convert-caffe2-to-onnx, convert-onnx-to-caffe2 and torchrun are installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
      "  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "!pip install -q bitsandbytes datasets accelerate loralib\n",
    "!pip install -q git+https://github.com/huggingface/transformers.git@main git+https://github.com/huggingface/peft.git"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d35008ce-0d55-4f74-9eb9-c9dcd392a4ce",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"0\"\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import bitsandbytes as bnb\n",
    "from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM\n",
    "\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"bigscience/bloom-3b\")\n",
    "tokenizer.pad_token = tokenizer.eos_token"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0efc3e69-f796-46cf-8ee8-52d72f9f653e",
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [],
   "source": [
    "import transformers\n",
    "from datasets import load_dataset\n",
    "from datasets import interleave_datasets\n",
    "data_as = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/as/as.txt\"],split='train',streaming=True)\n",
    "data_bn = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/bn/bn.txt\"],split='train',streaming=True)\n",
    "data_gu = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/gu/gu.txt\"],split='train',streaming=True)\n",
    "data_hi = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/hi/hi.txt\"],split='train',streaming=True)\n",
    "data_kn = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/kn/kn.txt\"],split='train',streaming=True)\n",
    "data_ml = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/ml/ml.txt\"],split='train',streaming=True)\n",
    "data_mr = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/mr/mr.txt\"],split='train',streaming=True)\n",
    "data_or = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/or/or.txt\"],split='train',streaming=True)\n",
    "data_pa = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/pa/pa.txt\"],split='train',streaming=True)\n",
    "data_ta = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/ta/ta.txt\"],split='train',streaming=True)\n",
    "data_te = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/te/te.txt\"],split='train',streaming=True)\n",
    "\n",
    "multilingual_dataset = interleave_datasets([data_as, data_bn,data_gu,data_hi,data_kn,data_ml,data_mr,data_or,data_pa,data_ta,data_te])\n",
    "\n",
    "#data_en = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/bn/en.txt\"],streaming=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "f61461ed-e91e-45e4-b1cd-c31cf15a6d2d",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "multilingual_dataset = multilingual_dataset.map(lambda samples: tokenizer(samples['text'],truncation=True,max_length=1024,padding=True), batched=True)\n",
    "#data.push_to_hub('aashay96/indic_complete_tokenised')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "b8ed6593-d80c-4fdb-82e7-7b56b2bbc2c2",
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Overriding torch_dtype=None with `torch_dtype=torch.float16` due to requirements of `bitsandbytes` to enable model loading in mixed int8. Either pass torch_dtype=torch.float16 or don't pass this argument at all to remove this warning.\n"
     ]
    }
   ],
   "source": [
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "    \"bigscience/bloom-3b\", \n",
    "    load_in_8bit=True, \n",
    "    device_map='auto',\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "6c4d2f2e-da71-42bc-a877-d4e236701f84",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "BloomForCausalLM(\n",
       "  (transformer): BloomModel(\n",
       "    (word_embeddings): Embedding(250880, 2560)\n",
       "    (word_embeddings_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
       "    (h): ModuleList(\n",
       "      (0-29): 30 x BloomBlock(\n",
       "        (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
       "        (self_attention): BloomAttention(\n",
       "          (query_key_value): Linear8bitLt(in_features=2560, out_features=7680, bias=True)\n",
       "          (dense): Linear8bitLt(in_features=2560, out_features=2560, bias=True)\n",
       "          (attention_dropout): Dropout(p=0.0, inplace=False)\n",
       "        )\n",
       "        (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
       "        (mlp): BloomMLP(\n",
       "          (dense_h_to_4h): Linear8bitLt(in_features=2560, out_features=10240, bias=True)\n",
       "          (gelu_impl): BloomGelu()\n",
       "          (dense_4h_to_h): Linear8bitLt(in_features=10240, out_features=2560, bias=True)\n",
       "        )\n",
       "      )\n",
       "    )\n",
       "    (ln_f): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
       "  )\n",
       "  (lm_head): Linear(in_features=2560, out_features=250880, bias=False)\n",
       ")"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "90340bb5-8a3a-414a-8b5b-8cf897918381",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "for param in model.parameters():\n",
    "  param.requires_grad = False  # freeze the model - train adapters later\n",
    "  if param.ndim == 1:\n",
    "    # cast the small parameters (e.g. layernorm) to fp32 for stability\n",
    "    param.data = param.data.to(torch.float32)\n",
    "\n",
    "model.gradient_checkpointing_enable()  # reduce number of stored activations\n",
    "model.enable_input_require_grads()\n",
    "\n",
    "class CastOutputToFloat(nn.Sequential):\n",
    "  def forward(self, x): return super().forward(x).to(torch.float32)\n",
    "model.lm_head = CastOutputToFloat(model.lm_head)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "963eccdd-a57c-4970-b86c-bf446cc0243a",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "BloomForCausalLM(\n",
       "  (transformer): BloomModel(\n",
       "    (word_embeddings): Embedding(250880, 2560)\n",
       "    (word_embeddings_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
       "    (h): ModuleList(\n",
       "      (0-29): 30 x BloomBlock(\n",
       "        (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
       "        (self_attention): BloomAttention(\n",
       "          (query_key_value): Linear8bitLt(in_features=2560, out_features=7680, bias=True)\n",
       "          (dense): Linear8bitLt(in_features=2560, out_features=2560, bias=True)\n",
       "          (attention_dropout): Dropout(p=0.0, inplace=False)\n",
       "        )\n",
       "        (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
       "        (mlp): BloomMLP(\n",
       "          (dense_h_to_4h): Linear8bitLt(in_features=2560, out_features=10240, bias=True)\n",
       "          (gelu_impl): BloomGelu()\n",
       "          (dense_4h_to_h): Linear8bitLt(in_features=10240, out_features=2560, bias=True)\n",
       "        )\n",
       "      )\n",
       "    )\n",
       "    (ln_f): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
       "  )\n",
       "  (lm_head): CastOutputToFloat(\n",
       "    (0): Linear(in_features=2560, out_features=250880, bias=False)\n",
       "  )\n",
       ")"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "0de04fc8-1541-445d-8a6c-528862e18f69",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def print_trainable_parameters(model):\n",
    "    \"\"\"\n",
    "    Prints the number of trainable parameters in the model.\n",
    "    \"\"\"\n",
    "    trainable_params = 0\n",
    "    all_param = 0\n",
    "    for _, param in model.named_parameters():\n",
    "        all_param += param.numel()\n",
    "        if param.requires_grad:\n",
    "            trainable_params += param.numel()\n",
    "    print(\n",
    "        f\"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}\"\n",
    "    )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ac1c4734-530a-4c9c-a055-8c8d3f46b169",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "trainable params: 4915200 || all params: 3007472640 || trainable%: 0.1634329082375293\n"
     ]
    }
   ],
   "source": [
    "from peft import LoraConfig, get_peft_model \n",
    "\n",
    "config = LoraConfig(\n",
    "    r=16,\n",
    "    lora_alpha=32,\n",
    "    lora_dropout=0.05,\n",
    "    bias=\"none\",\n",
    "    task_type=\"CAUSAL_LM\"\n",
    ")\n",
    "\n",
    "model = get_peft_model(model, config)\n",
    "print_trainable_parameters(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "683c0239-9384-4d80-b2d0-64738e9c53f5",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'train': <datasets.iterable_dataset.IterableDataset at 0x7ff380f5fcd0>}"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "ab933bdc-8d59-44e3-b210-a5c517660ef3",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<datasets.iterable_dataset.IterableDataset at 0x7f0e30bce340>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "edabb62f-d5b3-4d5a-9220-751b940e0a5b",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n",
      "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33maashay96\u001b[0m (\u001b[33mindic-lm\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "!pip install wandb\n",
    "import wandb\n",
    "wandb.login()\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0ce63418-3aba-4549-8a50-922a5cf10cb1",
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [],
   "source": [
    "import transformers\n",
    "from datasets import load_dataset\n",
    "#data = load_dataset(\"Abirate/english_quotes\")\n",
    "#data = data.map(lambda samples: tokenizer(samples['quote']), batched=True)\n",
    "\n",
    "trainer = transformers.Trainer(\n",
    "    model=model, \n",
    "    train_dataset=multilingual_dataset,\n",
    "    args=transformers.TrainingArguments(\n",
    "        per_device_train_batch_size=4, \n",
    "        gradient_accumulation_steps=16,\n",
    "        #gradient_checkpointing=True,\n",
    "        warmup_steps=100, \n",
    "        save_steps=1000,\n",
    "        #num_train_epochs=3,\n",
    "        max_steps=20000, \n",
    "        learning_rate=3e-4, \n",
    "        fp16=True,\n",
    "        logging_steps=1, \n",
    "        output_dir='outputs',report_to='wandb'\n",
    "    ),\n",
    "    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
    ")\n",
    "model.config.use_cache = False  # silence the warnings. Please re-enable for inference!\n",
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0ceeb7a2-7f94-4153-96b0-af19acf90bdb",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "model.push_to_hub(\"aashay96/indic-BloomLM\", use_auth_token=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "15eb4b53-1354-4729-9cb7-872b057b11be",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      " आप कैसे हैं? आप अपने जीवन में क्या कर रहे हैं?\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "wandb: Waiting for W&B process to finish... (success).\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "from peft import PeftModel, PeftConfig\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer\n",
    "\n",
    "peft_model_id = \"aashay96/indic-BloomLM\"\n",
    "config = PeftConfig.from_pretrained(peft_model_id)\n",
    "model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')\n",
    "tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
    "\n",
    "# Load the Lora model\n",
    "model = PeftModel.from_pretrained(model, peft_model_id)\n",
    "\n",
    "\n",
    "\n",
    "batch = tokenizer(\"आप कैसे हैं\", return_tensors='pt')\n",
    "\n",
    "with torch.cuda.amp.autocast():\n",
    "  output_tokens = model.generate(**batch, max_new_tokens=10)\n",
    "\n",
    "print('\\n\\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}