File size: 6,690 Bytes
caaa9f6
cf85301
caaa9f6
 
 
 
cf85301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caaa9f6
cb6e5af
caaa9f6
ae36302
 
628d232
 
97b873e
 
caaa9f6
 
9a2e094
 
 
 
 
 
 
 
969a3ef
 
 
abb6dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
969a3ef
abb6dbf
 
 
 
969a3ef
caaa9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf85301
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: bigstral-12b-32k
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 41.94
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 25.56
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.98
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 5.7
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.86
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 18.24
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
      name: Open LLM Leaderboard
---
# bigstral-12b-32k

`ollama run ehartford/bigstral`

I reached for SOLAR but realized that its only 4k...   Decided to make my own 32k version.

This is [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) with layers interleaved to create a larger 12b model.

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Prompt Format

```
<s>[INST] What is your favourite condiment? [/INST]
Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s>
[INST] Do you have dangerously spicy mayonnaise recipes? [/INST]
```

## Example Output


give me some code that is very simple in javascript but would be very difficult in ANSI-C

> In JavaScript, functions are first-class values, which means you can assign them to variables, pass them as arguments to other functions, and even nest them inside other functions. This leads to concise and expressive code.
>
> Here's an example of a simple recursive function that calculates the factorial of a given number in JavaScript:
>
> ```javascript
> const factorial = n => n === 0 ? 1 : n * factorial(n - 1);
>
> console.log(factorial(5)); // Output: 120
>
> ```
>
> Now, let's try to write an equivalent code snippet in ANSI-C with similar functionality:
>
> ```c
> #include <stdio.h>
> #define MAX_RECURSION_DEPTH 1000
> int factorial(int n) {
>     if (n == 0)
>         return 1;
>     else {
>         int result;
>         result = factorial(--n);
>         if (++depth > MAX_RECURSION_DEPTH)
>             while(1){} // Recursion stack overflow
>         return n * result;
>     }
> }
> int main() {
>     int i, result;
>     int n = 5;
>     int depth = 0;
>
>     result = factorial(n);
>     printf("Factorial of %d is: %d\n", n, result);
>     return 0;
> }
> ```
> 
> As you can see, the ANSI-C code becomes more verbose and has several disadvantages compared to JavaScript:
>
> 1. Need to define a maximum recursion depth using a constant or an array index, which can lead to hardcoded limits and potential stack overflow issues.
> 2. The use of preprocessor directives (#define) for defining functions and macros can make the code less readable and harder to understand.
> 3. The lack of closures in ANSI-C requires using static variables or passing arguments as arguments to nested functions, making the code more verbose and less concise.
> ```

## Merge Details
### Merge Method

This model was merged using the passthrough merge method.

### Models Merged

The following models were included in the merge:
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
  - layer_range: [0, 8]
    model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
  - layer_range: [4, 12]
    model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
  - layer_range: [8, 16]
    model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
  - layer_range: [12, 20]
    model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
  - layer_range: [16, 24]
    model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
  - layer_range: [20, 28]
    model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
  - layer_range: [24, 32]
    model: mistralai/Mistral-7B-Instruct-v0.2

```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__bigstral-12b-32k)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |18.05|
|IFEval (0-Shot)    |41.94|
|BBH (3-Shot)       |25.56|
|MATH Lvl 5 (4-Shot)| 0.98|
|GPQA (0-shot)      | 5.70|
|MuSR (0-shot)      |15.86|
|MMLU-PRO (5-shot)  |18.24|