abdelnour131 commited on
Commit
eec60d5
1 Parent(s): b9ca4e7

End of training

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: yojul/wav2vec2-base-one-shot-hip-hop-drums-clf
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - marsyas/gtzan
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: wav2vec2-base-one-shot-hip-hop-drums-clf-finetuned-gtzan
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: GTZAN
19
+ type: marsyas/gtzan
20
+ config: all
21
+ split: train
22
+ args: all
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.74
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # wav2vec2-base-one-shot-hip-hop-drums-clf-finetuned-gtzan
33
+
34
+ This model is a fine-tuned version of [yojul/wav2vec2-base-one-shot-hip-hop-drums-clf](https://huggingface.co/yojul/wav2vec2-base-one-shot-hip-hop-drums-clf) on the GTZAN dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.9288
37
+ - Accuracy: 0.74
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 4
58
+ - eval_batch_size: 4
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 2
61
+ - total_train_batch_size: 8
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 5
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
72
+ | 1.7695 | 1.0 | 100 | 1.9632 | 0.345 |
73
+ | 1.3851 | 2.0 | 200 | 1.3526 | 0.56 |
74
+ | 1.0214 | 3.0 | 300 | 1.3209 | 0.58 |
75
+ | 0.725 | 4.0 | 400 | 1.0294 | 0.72 |
76
+ | 0.6425 | 5.0 | 500 | 0.9288 | 0.74 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.44.2
82
+ - Pytorch 2.4.1+cu121
83
+ - Datasets 3.0.1
84
+ - Tokenizers 0.19.1