abdoutony207 commited on
Commit
69d3286
1 Parent(s): c002b4a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - un_multi
7
+ metrics:
8
+ - bleu
9
+ model-index:
10
+ - name: m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu1
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: un_multi
17
+ type: un_multi
18
+ args: ar-en
19
+ metrics:
20
+ - name: Bleu
21
+ type: bleu
22
+ value: 41.8577
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu1
29
+
30
+ This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the un_multi dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.3603
33
+ - Bleu: 41.8577
34
+ - Meteor: 0.4199
35
+ - Gen Len: 41.9
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 11
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len |
66
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|
67
+ | 5.111 | 0.5 | 100 | 3.2467 | 29.5017 | 0.3371 | 42.425 |
68
+ | 2.1491 | 1.0 | 200 | 1.0018 | 33.0563 | 0.3593 | 41.205 |
69
+ | 0.5911 | 1.5 | 300 | 0.4159 | 34.5818 | 0.3705 | 42.0625 |
70
+ | 0.3546 | 2.0 | 400 | 0.3723 | 36.6179 | 0.3823 | 40.925 |
71
+ | 0.2487 | 2.5 | 500 | 0.3595 | 39.0331 | 0.3956 | 41.56 |
72
+ | 0.2365 | 3.0 | 600 | 0.3485 | 39.5188 | 0.4023 | 41.6425 |
73
+ | 0.1687 | 3.5 | 700 | 0.3542 | 40.1728 | 0.4043 | 42.61 |
74
+ | 0.1791 | 4.0 | 800 | 0.3466 | 40.4858 | 0.4101 | 41.5575 |
75
+ | 0.1196 | 4.5 | 900 | 0.3493 | 41.2457 | 0.4123 | 41.755 |
76
+ | 0.1394 | 5.0 | 1000 | 0.3486 | 40.5606 | 0.4114 | 41.78 |
77
+ | 0.0958 | 5.5 | 1100 | 0.3568 | 41.1873 | 0.4157 | 41.7275 |
78
+ | 0.1043 | 6.0 | 1200 | 0.3557 | 41.2749 | 0.4165 | 41.935 |
79
+ | 0.073 | 6.5 | 1300 | 0.3603 | 41.8577 | 0.4199 | 41.9 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.20.1
85
+ - Pytorch 1.11.0
86
+ - Datasets 2.1.0
87
+ - Tokenizers 0.12.1