File size: 2,224 Bytes
f37dd19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c99ba2d
f37dd19
 
 
 
 
 
 
c99ba2d
f37dd19
 
 
 
 
 
 
c99ba2d
f37dd19
c99ba2d
 
f37dd19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c99ba2d
 
 
 
 
 
 
f37dd19
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-brain-xray
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: sartajbhuvaji/Brain-Tumor-Classification
      type: imagefolder
      config: default
      split: Testing
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6903553299492385
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-brain-xray

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sartajbhuvaji/Brain-Tumor-Classification dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9079
- Accuracy: 0.6904

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.2478        | 0.5556 | 100  | 0.9079          | 0.6904   |
| 0.1499        | 1.1111 | 200  | 1.1543          | 0.7183   |
| 0.0872        | 1.6667 | 300  | 1.1469          | 0.7614   |
| 0.0118        | 2.2222 | 400  | 1.2361          | 0.7259   |
| 0.0077        | 2.7778 | 500  | 1.2023          | 0.7665   |
| 0.0057        | 3.3333 | 600  | 1.2470          | 0.7640   |
| 0.0053        | 3.8889 | 700  | 1.2096          | 0.7766   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1