File size: 2,612 Bytes
ae0f22f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-base-clickbait-task1-20-epoch-post_title
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-base-clickbait-task1-20-epoch-post_title
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5412
- Accuracy: 0.7025
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 200 | 0.7414 | 0.7075 |
| No log | 2.0 | 400 | 0.6972 | 0.73 |
| 0.7437 | 3.0 | 600 | 0.7188 | 0.73 |
| 0.7437 | 4.0 | 800 | 0.9260 | 0.7225 |
| 0.3148 | 5.0 | 1000 | 1.0694 | 0.715 |
| 0.3148 | 6.0 | 1200 | 1.3980 | 0.735 |
| 0.3148 | 7.0 | 1400 | 1.6897 | 0.7125 |
| 0.103 | 8.0 | 1600 | 1.8628 | 0.7275 |
| 0.103 | 9.0 | 1800 | 2.0991 | 0.7125 |
| 0.0456 | 10.0 | 2000 | 2.0466 | 0.7225 |
| 0.0456 | 11.0 | 2200 | 2.2220 | 0.7225 |
| 0.0456 | 12.0 | 2400 | 2.3278 | 0.6975 |
| 0.0222 | 13.0 | 2600 | 2.4275 | 0.7025 |
| 0.0222 | 14.0 | 2800 | 2.4249 | 0.695 |
| 0.0092 | 15.0 | 3000 | 2.4740 | 0.7275 |
| 0.0092 | 16.0 | 3200 | 2.4897 | 0.7125 |
| 0.0092 | 17.0 | 3400 | 2.5280 | 0.705 |
| 0.0058 | 18.0 | 3600 | 2.5360 | 0.705 |
| 0.0058 | 19.0 | 3800 | 2.5075 | 0.715 |
| 0.0039 | 20.0 | 4000 | 2.5412 | 0.7025 |
### Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|