--- base_model: microsoft/wavlm-base tags: - audio-classification - deepfake - audio-spoof - generated_from_trainer metrics: - accuracy model-index: - name: wavlm-base-960h-asv19-deepfake results: [] --- # wavlm-base-960h-asv19-deepfake This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0332 - Accuracy: 0.9950 - Far: 0.0416 - Frr: 0.0009 - Eer: 0.0212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Far | Frr | Eer | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:| | 0.2408 | 0.39 | 2500 | 0.0574 | 0.9889 | 0.0863 | 0.0025 | 0.0444 | | 0.0372 | 0.79 | 5000 | 0.0524 | 0.9901 | 0.0914 | 0.0006 | 0.0460 | | 0.0231 | 1.18 | 7500 | 0.0539 | 0.9912 | 0.0824 | 0.0004 | 0.0414 | | 0.0213 | 1.58 | 10000 | 0.0301 | 0.9951 | 0.0361 | 0.0013 | 0.0187 | | 0.0191 | 1.97 | 12500 | 0.0332 | 0.9950 | 0.0416 | 0.0009 | 0.0212 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.2