--- base_model: microsoft/wavlm-base tags: - audio-classification - deepfake - audio-spoof - generated_from_trainer metrics: - accuracy model-index: - name: wavlm-base-960h-itw-deepfake results: [] --- # wavlm-base-960h-itw-deepfake This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0593 - Accuracy: 0.9896 - FAR: 0.0080 - FRR: 0.0144 - EER: 0.0112 ## Model description ### Quick Use ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config = AutoConfig.from_pretrained("abhishtagatya/wavlm-base-960h-itw-deepfake") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/wavlm-base-960h-itw-deepfake") model = WavLMForSequenceClassification.from_pretrained("abhishtagatya/wavlm-base-960h-itw-deepfake", config=config).to(device) # Your Logic Here ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | FAR | FRR | EER | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:| | 0.3205 | 0.39 | 2500 | 0.1223 | 0.9699 | 0.0343 | 0.0229 | 0.0286 | | 0.0752 | 0.79 | 5000 | 0.0822 | 0.9843 | 0.0145 | 0.0178 | 0.0161 | | 0.0666 | 1.18 | 7500 | 0.0825 | 0.9849 | 0.0158 | 0.0140 | 0.0149 | | 0.0569 | 1.57 | 10000 | 0.0674 | 0.9884 | 0.0103 | 0.0140 | 0.0121 | | 0.0567 | 1.97 | 12500 | 0.0593 | 0.9896 | 0.0080 | 0.0144 | 0.0112 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.1