File size: 9,106 Bytes
4d7378e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
'''
Adapted from https://github.com/lupantech/ScienceQA
'''

from dataclasses import dataclass
from typing import List, Optional

def get_question_text(problem):
    question = problem['question']
    return question


def get_context_text(problem, use_caption):
    txt_context = problem['hint']
    img_context = problem['caption'] if use_caption else ""
    context = " ".join([txt_context, img_context]).strip()
    if context == "":
        context = "N/A"
    return context


def get_choice_text(probelm, options):
    choices = probelm['choices']
    choice_list = []
    for i, c in enumerate(choices):
        choice_list.append("({}) {}".format(options[i], c))
    choice_txt = " ".join(choice_list)
    #print(choice_txt)
    return choice_txt

def get_origin_answer(problem, options):
    return problem['choices'][problem['answer']]

def get_answer(problem, options):
    return options[problem['answer']]


def get_lecture_text(problem):
    # \\n: GPT-3 can generate the lecture with more tokens.
    lecture = problem['lecture'].replace("\n", "\\n")
    return lecture


def get_solution_text(problem):
    # \\n: GPT-3 can generate the solution with more tokens
    solution = problem['solution'].replace("\n", "\\n")
    return solution


def create_one_example(format, question, context, choice, answer, lecture, solution, test_example=True, WithOutput = False, curr_le_data=None):

    input_format, output_format = format.split("-")

    ## Inputs
    if input_format == "CQM":
        input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\n"
    elif input_format == "QCM":
        input = f"Question: {question}\nContext: {context}\nOptions: {choice}\n"
    elif input_format == "QM":
        input = f"Question: {question}\nOptions: {choice}\n"
    elif input_format == "QC":
        input = f"Question: {question}\nContext: {context}\n"
    elif input_format == "QCMG":
        if curr_le_data is not None:
            input = f"Question: {question}\nContext: {context}\nOptions: {choice}\n{curr_le_data}\n"
        else:
            input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nSolution: {lecture} {solution}\n"
    elif input_format == "CQMG":
        if curr_le_data is not None:
            input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\n{curr_le_data}\n"
        else:
            input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\nSolution: {lecture} {solution}\n"
    # upper bound experiment
    elif input_format == "QCML":
        input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture}\n"
    elif input_format == "QCME":
        input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {solution}\n"
    elif input_format == "QCMLE":
        input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture} {solution}\n"

    elif input_format == "QCLM":
        input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture}\nOptions: {choice}\n"
    elif input_format == "QCEM":
        input = f"Question: {question}\nContext: {context}\nBECAUSE: {solution}\nOptions: {choice}\n"
    elif input_format == "QCLEM":
        input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture} {solution}\nOptions: {choice}\n"
    elif input_format == "QCMA":
        input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nAnswer: The answer is {answer}.\n"
    elif input_format == "QCA":
        input = f"Question: {question}\nContext: {context}\nAnswer: The answer is {answer}. \nBECAUSE:"

    # Outputs
    if test_example:
        if output_format == 'A':
            output = "Answer:"
        elif output_format == 'E':
            output = "Solution:"
        else:
            output = "Solution:"
    elif output_format == 'A':
        output = f"Answer: The answer is {answer}."

    elif output_format == 'AL':
        output = f"Answer: The answer is {answer}. BECAUSE: {solution}"
    elif output_format == 'AE':
        output = f"Answer: The answer is {answer}. BECAUSE: {lecture}"
    elif output_format == 'ALE':
        output = f"Answer: The answer is {answer}. BECAUSE: {lecture} {solution}"
    elif output_format == 'AEL':
        output = f"Answer: The answer is {answer}. BECAUSE: {solution} {lecture}"

    elif output_format == 'LA':
        output = f"Answer: {lecture} The answer is {answer}."
    elif output_format == 'EA':
        output = f"Answer: {solution} The answer is {answer}."
    elif output_format == 'LEA':
        output = f"Answer: {lecture} {solution} The answer is {answer}."
    elif output_format == 'ELA':
        output = f"Answer: {solution} {lecture} The answer is {answer}."

    elif output_format == 'LE':
        output = f"Solution: {lecture} {solution}."

    elif output_format == 'E':
        output = f"Solution: {solution}"
        
    
    if WithOutput:
        if output.endswith("BECAUSE:"):
            output = output.replace("BECAUSE:", "").strip()
        if output_format == 'E':
            text = input + f'Solution:'
        elif output_format == 'A':
            text = input + f'Answer:'
        else: 
            text = input + f'Solution:'
        text = text.replace("  ", " ").strip()
        output = output.replace("  ", " ").strip()
        return text, output
        
        
    text = input + output
    text = text.replace("  ", " ").strip()
    if text.endswith("BECAUSE:"):
        text = text.replace("BECAUSE:", "").strip()
    return text


def build_prompt(problems, shot_qids, test_qid, args):

    examples = []

    # n-shot training examples
    for qid in shot_qids:
        question = get_question_text(problems[qid])
        context = get_context_text(problems[qid], args.use_caption)
        choice = get_choice_text(problems[qid], args.options)
        answer = get_answer(problems[qid], args.options)
        lecture = get_lecture_text(problems[qid])
        solution = get_solution_text(problems[qid])

        train_example = create_one_example(args.prompt_format,
                                           question,
                                           context,
                                           choice,
                                           answer,
                                           lecture,
                                           solution,
                                           test_example=False)
        examples.append(train_example)

    # test example
    question = get_question_text(problems[test_qid])
    context = get_context_text(problems[test_qid], args.use_caption)
    choice = get_choice_text(problems[test_qid], args.options)
    answer = get_answer(problems[test_qid], args.options)
    lecture = get_lecture_text(problems[test_qid])
    solution = get_solution_text(problems[test_qid])

    test_example = create_one_example(args.prompt_format,
                                      question,
                                      context,
                                      choice,
                                      answer,
                                      lecture,
                                      solution,
                                      test_example=True)
    examples.append(test_example)

    # create the prompt input
    prompt_input = '\n\n'.join(examples)

    return prompt_input

def build_train_pair(problems, test_qid, args, curr_le_data=None):

    examples = []

    # test example
    question = get_question_text(problems[test_qid])
    context = get_context_text(problems[test_qid], args.use_caption)
    choice = get_choice_text(problems[test_qid], args.options)
    
    lecture = get_lecture_text(problems[test_qid])
    solution = get_solution_text(problems[test_qid])

    # answer_text = get_origin_answer(problems[test_qid], args.options)
    answer_option = get_answer(problems[test_qid], args.options)
    answer = "(" + answer_option + ")"
    
    test_example, target = create_one_example(args.prompt_format,
                                      question,
                                      context,
                                      choice,
                                      answer,
                                      lecture,
                                      solution,
                                      test_example=False,WithOutput = True, curr_le_data=curr_le_data)
    examples.append(test_example)
    
    target = target.replace("Answer:", "").strip()
    # create the prompt input
    prompt_input = '\n\n'.join(examples)

    return prompt_input, target

@dataclass(frozen=True)
class InputFeatures:
    """
    A single set of features of data.
    Property names are the same names as the corresponding inputs to a model.
    """

    input_ids: List[List[int]]
    attention_mask: Optional[List[List[int]]]
    token_type_ids: Optional[List[List[int]]]
    le_input_ids: List[List[int]]
    le_attention_mask: Optional[List[List[int]]]
    le_token_type_ids: Optional[List[List[int]]]
    label: Optional[int]