--- base_model: BAAI/bge-m3 datasets: [] language: - es library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:81 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Disposeu del servei OAC360º d'assistència en la tramitació electrònica amb el que podeu contactar de dilluns a divendres de 08:00 a 20:00 a través del tel. 935 955 094, del correu oac360@sitges.cat, o del servei Truca'm, omplint el formulari perquè us truquin. sentences: - Com es pot demanar la comunicació prèvia d'obres per instal·lacions de plaques solars en sol urbà? - Quin és el correu electrònic per contactar amb el servei OAC360º? - Quin és l'efecte del silenci administratiu? - source_sentence: Positiu, llevat els casos en els quals manquin informes preceptius i vinculants d’altres administracions o d’aquells en els què es transfereixin al sol·licitant facultats contràries al planejament i la legislació urbanística. sentences: - Quin és el document que cal aportar per a aquest tràmit? - Quin és el lloc on es pot tramitar la presentació de justificants de pagament per als ajuts del lloguer just dels habitatges? - Quin és el sentit del silenci administratiu per a la comunicació prèvia d'obres per instal·lacions de plaques solars en sol urbà? model-index: - name: BGE large Legal Spanish results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.1111111111111111 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4444444444444444 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7777777777777778 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1111111111111111 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.08888888888888889 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07777777777777778 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1111111111111111 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4444444444444444 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7777777777777778 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.37561164042849293 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2550705467372134 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.26453109424123916 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.1111111111111111 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4444444444444444 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7777777777777778 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1111111111111111 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.08888888888888889 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07777777777777778 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1111111111111111 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4444444444444444 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7777777777777778 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.37561164042849293 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2550705467372134 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.26591710758377424 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.1111111111111111 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4444444444444444 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7777777777777778 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1111111111111111 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.08888888888888889 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07777777777777778 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1111111111111111 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4444444444444444 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7777777777777778 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.36941287151905455 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.24828042328042324 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.25912698412698415 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.1111111111111111 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4444444444444444 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6666666666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1111111111111111 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.08888888888888889 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06666666666666668 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1111111111111111 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4444444444444444 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6666666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.33724514013077883 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.23796296296296296 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2553057025279247 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.1111111111111111 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5555555555555556 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7777777777777778 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1111111111111111 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1111111111111111 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07777777777777778 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1111111111111111 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5555555555555556 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7777777777777778 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3920021980903836 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.27248677248677244 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2795432240996757 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.2222222222222222 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4444444444444444 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5555555555555556 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.2222222222222222 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.08888888888888889 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05555555555555555 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2222222222222222 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4444444444444444 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5555555555555556 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3626677657118585 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3029100529100529 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.32598958775429365 name: Cosine Map@100 --- # BGE large Legal Spanish This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Language:** es - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/bge-m3-es-legal-tmp-6") # Run inference sentences = [ 'Positiu, llevat els casos en els quals manquin informes preceptius i vinculants d’altres administracions o d’aquells en els què es transfereixin al sol·licitant facultats contràries al planejament i la legislació urbanística.', "Quin és el sentit del silenci administratiu per a la comunicació prèvia d'obres per instal·lacions de plaques solars en sol urbà?", 'Quin és el lloc on es pot tramitar la presentació de justificants de pagament per als ajuts del lloguer just dels habitatges?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1111 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.4444 | | cosine_accuracy@10 | 0.7778 | | cosine_precision@1 | 0.1111 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0889 | | cosine_precision@10 | 0.0778 | | cosine_recall@1 | 0.1111 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.4444 | | cosine_recall@10 | 0.7778 | | cosine_ndcg@10 | 0.3756 | | cosine_mrr@10 | 0.2551 | | **cosine_map@100** | **0.2645** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1111 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.4444 | | cosine_accuracy@10 | 0.7778 | | cosine_precision@1 | 0.1111 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0889 | | cosine_precision@10 | 0.0778 | | cosine_recall@1 | 0.1111 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.4444 | | cosine_recall@10 | 0.7778 | | cosine_ndcg@10 | 0.3756 | | cosine_mrr@10 | 0.2551 | | **cosine_map@100** | **0.2659** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1111 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.4444 | | cosine_accuracy@10 | 0.7778 | | cosine_precision@1 | 0.1111 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0889 | | cosine_precision@10 | 0.0778 | | cosine_recall@1 | 0.1111 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.4444 | | cosine_recall@10 | 0.7778 | | cosine_ndcg@10 | 0.3694 | | cosine_mrr@10 | 0.2483 | | **cosine_map@100** | **0.2591** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1111 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.4444 | | cosine_accuracy@10 | 0.6667 | | cosine_precision@1 | 0.1111 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0889 | | cosine_precision@10 | 0.0667 | | cosine_recall@1 | 0.1111 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.4444 | | cosine_recall@10 | 0.6667 | | cosine_ndcg@10 | 0.3372 | | cosine_mrr@10 | 0.238 | | **cosine_map@100** | **0.2553** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1111 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.5556 | | cosine_accuracy@10 | 0.7778 | | cosine_precision@1 | 0.1111 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.1111 | | cosine_precision@10 | 0.0778 | | cosine_recall@1 | 0.1111 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.5556 | | cosine_recall@10 | 0.7778 | | cosine_ndcg@10 | 0.392 | | cosine_mrr@10 | 0.2725 | | **cosine_map@100** | **0.2795** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.2222 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.4444 | | cosine_accuracy@10 | 0.5556 | | cosine_precision@1 | 0.2222 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0889 | | cosine_precision@10 | 0.0556 | | cosine_recall@1 | 0.2222 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.4444 | | cosine_recall@10 | 0.5556 | | cosine_ndcg@10 | 0.3627 | | cosine_mrr@10 | 0.3029 | | **cosine_map@100** | **0.326** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 6 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 6 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:-------:|:-----:|:-------------:|:----------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 1.0 | 1 | - | 3.7675 | 0.2475 | 0.2919 | 0.2372 | 0.2511 | 0.2510 | 0.2468 | | **2.0** | **2** | **-** | **3.9701** | **0.2533** | **0.3028** | **0.2473** | **0.2601** | **0.3449** | **0.2716** | | 3.0 | 4 | - | 4.1211 | 0.2645 | 0.2704 | 0.2548 | 0.2614 | 0.3283 | 0.2654 | | 4.0 | 5 | 1.8359 | 4.0228 | 0.2645 | 0.2789 | 0.2553 | 0.2619 | 0.3260 | 0.2659 | | 5.0 | 6 | - | 3.9758 | 0.2645 | 0.2795 | 0.2553 | 0.2591 | 0.3260 | 0.2659 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.3 - PyTorch: 2.3.1+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```