File size: 16,193 Bytes
6f7f115
 
 
9691248
6f7f115
 
 
 
 
 
 
 
9691248
 
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from collections import OrderedDict
from functools import partial
from math import isqrt
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_uniformer import UniFormerWithProjectionHeadConfig

logger = logging.get_logger(__name__)


layer_scale = False
init_value = 1e-6


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class CMlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

    
class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class CBlock(nn.Module):
    def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU):
        super().__init__()
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = nn.BatchNorm2d(dim)
        self.conv1 = nn.Conv2d(dim, dim, 1)
        self.conv2 = nn.Conv2d(dim, dim, 1)
        self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = nn.BatchNorm2d(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.pos_embed(x)
        x = x + self.module_1(x)
        x = x + self.module_2(x)
        return x

    def module_1(self, x):
        x = self.norm1(x.to(dtype=self.norm1.weight.dtype))  # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
        x = self.conv1(x)
        x = self.attn(x)
        x = self.conv2(x)
        x = self.drop_path(x)
        return x
    
    def module_2(self, x):
        x = self.norm2(x.to(dtype=self.norm2.weight.dtype))  # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
        x = self.mlp(x)
        x = self.drop_path(x)
        return x

class SABlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        global layer_scale
        self.ls = layer_scale
        if self.ls:
            global init_value
            print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
            self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
            self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)

    def forward(self, x):
        x = x + self.pos_embed(x)
        B, N, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        if self.ls:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.attn(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        x = x.transpose(1, 2).reshape(B, N, H, W)
        return x        
   

class HeadEmbedding(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(HeadEmbedding, self).__init__()

        self.proj = nn.Sequential(
            nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
            nn.BatchNorm2d(out_channels // 2),
            nn.GELU(),
            nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
            nn.BatchNorm2d(out_channels),
        )

    def forward(self, x):
        x = self.proj(x)
        return x


class MiddleEmbedding(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(MiddleEmbedding, self).__init__()

        self.proj = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
            nn.BatchNorm2d(out_channels),
        )

    def forward(self, x):
        x = self.proj(x)
        return x


class PatchEmbed(nn.Module):
    def __init__(self, image_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        image_size = to_2tuple(image_size)
        patch_size = to_2tuple(patch_size)
        num_patches_height = image_size[0] // patch_size[0]
        num_patches_width = image_size[1] // patch_size[1]
        num_patches = num_patches_height * num_patches_width
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        _, _, H, W = x.shape
        assert H == self.image_size[0] and W == self.image_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
        x = self.proj(x)
        B, _, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        return x
    
    
class UniFormer(nn.Module):
    def __init__(self, depth=[3, 4, 8, 3], image_size=224, in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512],
                 head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, patch_size=[4, 2, 2, 2],
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0., conv_stem=False, layer_norm_eps=1e-6, **kwargs):
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = partial(nn.LayerNorm, eps=layer_norm_eps) 
        if conv_stem:
            self.patch_embed1 = HeadEmbedding(in_channels=in_chans, out_channels=embed_dim[0])
            self.patch_embed2 = MiddleEmbedding(in_channels=embed_dim[0], out_channels=embed_dim[1])
            self.patch_embed3 = MiddleEmbedding(in_channels=embed_dim[1], out_channels=embed_dim[2])
            self.patch_embed4 = MiddleEmbedding(in_channels=embed_dim[2], out_channels=embed_dim[3])
        else:
            self.patch_embed1 = PatchEmbed(
                image_size=image_size, patch_size=patch_size[0], in_chans=in_chans, embed_dim=embed_dim[0])
            self.patch_embed2 = PatchEmbed(
                image_size=image_size // patch_size[0], patch_size=patch_size[1], in_chans=embed_dim[0], embed_dim=embed_dim[1])
            self.patch_embed3 = PatchEmbed(
                image_size=image_size // (patch_size[0]*patch_size[1]), patch_size=patch_size[2], in_chans=embed_dim[1], embed_dim=embed_dim[2])
            self.patch_embed4 = PatchEmbed(
                image_size=image_size // (patch_size[0]*patch_size[1]*patch_size[2]), patch_size=patch_size[3], in_chans=embed_dim[2], embed_dim=embed_dim[3])

        self.pos_drop = nn.Dropout(p=drop_rate)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))]  # stochastic depth decay rule
        num_heads = [dim // head_dim for dim in embed_dim]
        self.blocks1 = nn.ModuleList([
            CBlock(dim=embed_dim[0], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i])
            for i in range(depth[0])])
        self.blocks2 = nn.ModuleList([
            CBlock(dim=embed_dim[1], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i+depth[0]])
            for i in range(depth[1])])
        self.blocks3 = nn.ModuleList([
            SABlock(
                dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer)
            for i in range(depth[2])])
        self.blocks4 = nn.ModuleList([
            SABlock(
                dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer)
        for i in range(depth[3])])
        self.norm = nn.BatchNorm2d(embed_dim[-1])
        
        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))
        else:
            self.pre_logits = nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed1(x)
        x = self.pos_drop(x)
        for blk in self.blocks1:
            x = blk(x)
        x = self.patch_embed2(x)
        for blk in self.blocks2:
            x = blk(x)
        x = self.patch_embed3(x)
        for blk in self.blocks3:
            x = blk(x)
        x = self.patch_embed4(x)
        for blk in self.blocks4:
            x = blk(x)
        x = self.norm(x.to(dtype=self.norm.weight.dtype))  # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
        x = self.pre_logits(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        return x


class UniFormerPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = UniFormerWithProjectionHeadConfig
    main_input_name = "pixel_values"

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)


class UniFormerProjectionHead(torch.nn.Module):

    def __init__(self, config) -> None:
        super().__init__()

        # Layer normalisation before projection:
        self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)

        # No bias as following layer normalisation with bias:
        self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)


    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.layer_norm(x)
        x = self.projection(x)
        return x


class UniFormerModel(UniFormerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.uniformer = UniFormer(**vars(config))

        # Initialize weights and apply final processing:
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, ModelOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        last_hidden_state = self.uniformer(pixel_values)

        # Flatten h x w:
        last_hidden_state = torch.flatten(last_hidden_state, 2)

        # Permute last hidden state:
        last_hidden_state = torch.permute(last_hidden_state, [0, 2, 1])

        # return last_hidden_state
        if not return_dict:
            return last_hidden_state

        return ModelOutput(last_hidden_state=last_hidden_state)


class MultiUniFormerWithProjectionHead(UniFormerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.uniformer = UniFormer(**vars(config))
        self.projection_head = UniFormerProjectionHead(config)

        # Initialize weights and apply final processing:
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, ModelOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Flatten the batch and study_id dimensions:
        assert len(pixel_values.shape) == 5, 'pixel_values must be B, S, C, H, W, where S is the max number of images for a study in the batch.'
        last_hidden_state = self.uniformer(pixel_values.view(-1, *pixel_values.shape[2:]))
        # last_hidden_state = self.uniformer(pixel_values.flatten(start_dim=0, end_dim=1))

        # Flatten h x w:
        last_hidden_state = torch.flatten(last_hidden_state, 2)

        # Project the features for each spatial position to the decoder's hidden size:
        projection = self.projection_head(torch.permute(last_hidden_state, [0, 2, 1]))

        # Concatenate the features for each chest X-ray:
        projection = projection.view(pixel_values.shape[0], -1, projection.shape[-1])

        # Derive the attention mask from the pixel values:
        mask = (pixel_values[:, :, 0, 0, 0] != 0.0)[:, :, None]
        attention_mask = torch.ones(
            [projection.shape[0], pixel_values.shape[1], projection.shape[1] // pixel_values.shape[1]], 
            dtype=torch.long,
            device=mask.device,
        )
        attention_mask = attention_mask * mask
        attention_mask = attention_mask.view(attention_mask.shape[0], -1)

        if not return_dict:
            return projection

        return ModelOutput(last_hidden_state=projection, attention_mask=attention_mask)
    

if __name__ == '__main__':
    y = PatchEmbed()
    y(torch.randn(2, 3, 224, 224))