File size: 6,143 Bytes
ae934ba 9691248 ae934ba 9691248 ae934ba 9691248 ae934ba 9691248 ae934ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import csv
import os
from pathlib import Path
from tqdm import tqdm
try:
from .section_parser import custom_mimic_cxr_rules, section_text
except ImportError:
from section_parser import custom_mimic_cxr_rules, section_text
def list_rindex(l, s):
"""
Source: https://github.com/MIT-LCP/mimic-cxr/blob/master/txt/create_section_files.py
"""
"""Helper function: *last* matching element in a list"""
return len(l) - l[-1::-1].index(s) - 1
def create_section_files(reports_path, output_path, no_split):
"""
Modification of: https://github.com/MIT-LCP/mimic-cxr/blob/master/txt/create_section_files.py
"""
reports_path = Path(reports_path)
output_path = Path(output_path)
if not output_path.exists():
output_path.mkdir()
# not all reports can be automatically sectioned
# we load in some dictionaries which have manually determined sections
custom_section_names, custom_indices = custom_mimic_cxr_rules()
# get all higher up folders (p00, p01, etc)
p_grp_folders = os.listdir(reports_path)
p_grp_folders = [p for p in p_grp_folders
if p.startswith('p') and len(p) == 3]
p_grp_folders.sort()
# patient_studies will hold the text for use in NLP labeling
patient_studies = []
# study_sections will have an element for each study
# this element will be a list, each element having text for a specific section
study_sections = []
for p_grp in p_grp_folders:
# get patient folders, usually around ~6k per group folder
cxr_path = reports_path / p_grp
p_folders = os.listdir(cxr_path)
p_folders = [p for p in p_folders if p.startswith('p')]
p_folders.sort()
# For each patient in this grouping folder
print(p_grp)
for p in tqdm(p_folders):
patient_path = cxr_path / p
# get the filename for all their free-text reports
studies = os.listdir(patient_path)
studies = [s for s in studies
if s.endswith('.txt') and s.startswith('s')]
for s in studies:
# load in the free-text report
with open(patient_path / s, 'r') as fp:
text = ''.join(fp.readlines())
# get study string name without the txt extension
s_stem = s[0:-4]
# custom rules for some poorly formatted reports
if s_stem in custom_indices:
idx = custom_indices[s_stem]
patient_studies.append([s_stem, text[idx[0]:idx[1]]])
continue
# split text into sections
sections, section_names, section_idx = section_text(text)
# check to see if this has mis-named sections
# e.g. sometimes the impression is in the comparison section
if s_stem in custom_section_names:
sn = custom_section_names[s_stem]
idx = list_rindex(section_names, sn)
patient_studies.append([s_stem, sections[idx].strip()])
continue
# grab the *last* section with the given title
# prioritizes impression > findings, etc.
# "last_paragraph" is text up to the end of the report
# many reports are simple, and have a single section
# header followed by a few paragraphs
# these paragraphs are grouped into section "last_paragraph"
# note also comparison seems unusual but if no other sections
# exist the radiologist has usually written the report
# in the comparison section
idx = -1
for sn in ('impression', 'findings', 'indication', 'history', 'technique', 'last_paragraph', 'comparison'):
if sn in section_names:
idx = list_rindex(section_names, sn)
break
if idx == -1:
# we didn't find any sections we can use :(
patient_studies.append([s_stem, ''])
print(f'no impression/findings: {patient_path / s}')
else:
# store the text of the conclusion section
patient_studies.append([s_stem, sections[idx].strip()])
study_sectioned = [s_stem]
for sn in ('impression', 'findings', 'indication', 'history', 'technique', 'last_paragraph', 'comparison'):
if sn in section_names:
idx = list_rindex(section_names, sn)
study_sectioned.append(sections[idx].strip())
else:
study_sectioned.append(None)
study_sections.append(study_sectioned)
# write distinct files to facilitate modular processing
if len(patient_studies) > 0:
# write out a single CSV with the sections
with open(output_path / 'mimic_cxr_sectioned.csv', 'w') as fp:
csvwriter = csv.writer(fp)
# write header
csvwriter.writerow(['study', 'impression', 'findings', 'indication', 'history', 'technique', 'last_paragraph', 'comparison'])
for row in study_sections:
csvwriter.writerow(row)
if no_split:
# write all the reports out to a single file
with open(output_path / f'mimic_cxr_sections.csv', 'w') as fp:
csvwriter = csv.writer(fp)
for row in patient_studies:
csvwriter.writerow(row)
else:
# write ~22 files with ~10k reports each
n = 0
jmp = 10000
while n < len(patient_studies):
n_fn = n // jmp
with open(output_path / f'mimic_cxr_{n_fn:02d}.csv', 'w') as fp:
csvwriter = csv.writer(fp)
for row in patient_studies[n:n+jmp]:
csvwriter.writerow(row)
n += jmp
|