File size: 64,159 Bytes
9691248 6f7f115 9691248 ae934ba 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 beb6c08 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 6c80c6b 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 6c80c6b 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 beb6c08 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 453bf0e 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 6f7f115 9691248 453bf0e 9691248 6f7f115 9691248 3bc68dd 9691248 3bc68dd 9691248 6f7f115 9691248 6f7f115 9691248 ae934ba 9691248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 |
import json
import math
import os
import random
from typing import Optional, Tuple, Union
import datasets
import torch
import transformers
from torch.nn import CrossEntropyLoss
from torch.utils.data import Subset
from torchvision.io import decode_image
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_cxrmate_ed import EncoderDecoderConfig
from .dataset import PriorsDataset
from .modelling_uniformer import MultiUniFormerWithProjectionHead
from .prepare_dataset import prepare_dataset
from .utils import compute_time_delta
logger = logging.get_logger(__name__)
# Ordered by oblique, lateral, AP, and then PA views so that PA views are closest in position to the generated tokens (and oblique is furtherest).
VIEW_ORDER = [None, 'LPO', 'RAO', 'LAO', 'SWIMMERS', 'XTABLE LATERAL', 'LL', 'LATERAL', 'AP AXIAL', 'AP RLD', 'AP LLD', 'AP', 'PA RLD', 'PA LLD', 'PA']
def create_lookup_table(df, columns, start_idx):
df = df.groupby(columns).head(1)[columns].sort_values(by=columns)
indices = range(start_idx, start_idx + len(df))
df['index'] = indices
return df, indices[-1]
class FNNEncoder(torch.nn.Module):
def __init__(self, num_features, intermediate_size, decoder_hidden_size):
super().__init__()
self.up_proj = torch.nn.Linear(num_features, intermediate_size, bias=False)
self.down_proj = torch.nn.Linear(intermediate_size, decoder_hidden_size, bias=False)
self.act_fn = torch.nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.up_proj(x)))
class MIMICIVEDCXRMultimodalModel(VisionEncoderDecoderModel):
config_class = EncoderDecoderConfig
base_model_prefix = "vision_encoder_decoder"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
DefaultEncoderClass = MultiUniFormerWithProjectionHead,
DefaultDecoderClass = transformers.LlamaForCausalLM,
):
if decoder:
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
config.tie_word_embeddings = False
config.is_encoder_decoder = False
# Initialize with config:
PreTrainedModel.__init__(self, config)
# Encoder:
if encoder is None:
encoder = DefaultEncoderClass(config=config.encoder)
# Decoder:
if decoder is None:
assert not config.decoder.add_cross_attention
decoder = DefaultDecoderClass(config=config.decoder)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
assert config.decoder.is_decoder
assert not config.decoder.is_encoder_decoder
assert 'pad_token_id' in self.decoder.config.__dict__
assert 'time_delta_monotonic_inversion' in self.decoder.config.__dict__
assert 'add_time_deltas' in self.decoder.config.__dict__
assert 'history' in self.decoder.config.__dict__
assert 'tables_filter' in self.decoder.config.__dict__
assert 'prompt_report_sections_filter' in self.decoder.config.__dict__
assert isinstance(self.decoder.config.time_delta_monotonic_inversion, bool)
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tables.json'), 'r') as f:
self.tables = json.load(f)
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'lookup_tables.json'), 'r') as f:
self.luts = json.load(f)
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'token_type_ids.json'), 'r') as f:
self.token_type_to_token_type_id = json.load(f)
self.tables = {k: self.tables[k] for k in self.decoder.config.tables_filter}
self.tables['mimic_cxr_sectioned']['text_columns'] = self.decoder.config.prompt_report_sections_filter
for k in self.tables.keys():
if self.luts[k]['total'] > 0:
setattr(
self,
f'{k}_index_value_encoder',
FNNEncoder(
num_features=self.luts[k]['total'],
intermediate_size=self.decoder.config.index_value_encoder_intermediate_size,
decoder_hidden_size=self.decoder.config.hidden_size,
),
)
if self.decoder.config.add_time_deltas:
self.time_delta_encoder = FNNEncoder(
num_features=1,
intermediate_size=self.decoder.config.index_value_encoder_intermediate_size,
decoder_hidden_size=self.decoder.config.hidden_size,
)
self.token_type_embeddings = torch.nn.Embedding(max(self.token_type_to_token_type_id.values()) + 1, self.decoder.config.hidden_size)
self.time_delta_map = lambda x: 1 / math.sqrt(x + 1)
self.zero_time_delta_value = self.time_delta_map(0)
self.inf_time_delta_value = self.time_delta_map(float('inf'))
@classmethod
def from_encoder_decoder_pretrained(
cls,
encoder_pretrained_model_name_or_path: str = None,
decoder_pretrained_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the image encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
example is `google/vit-base-patch16-224-in21k`.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the text decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import VisionEncoderDecoderModel
>>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
>>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./vit-bert")
>>> # load fine-tuned model
>>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
```"""
kwargs_encoder = {
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove encoder, decoder kwargs from kwargs
for key in kwargs_encoder.keys():
del kwargs["encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
if encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_encoder:
encoder_config, kwargs_encoder = transformers.AutoConfig.from_pretrained(
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_encoder["config"] = encoder_config
encoder = transformers.AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = transformers.AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = False
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
decoder = transformers.AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# instantiate config with corresponding kwargs
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
# make sure input & output embeddings is not tied
config.tie_word_embeddings = False
config.is_encoder_decoder = False
return cls(encoder=encoder, decoder=decoder, config=config)
def forward(
self,
decoder_position_ids: torch.LongTensor,
decoder_attention_mask: torch.FloatTensor,
decoder_token_type_ids: torch.LongTensor,
decoder_input_ids: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
assert decoder_attention_mask.dtype == torch.long, f'The dtype for {decoder_attention_mask} was {decoder_attention_mask.dtype}. It should be torch.long'
if decoder_inputs_embeds is None:
decoder_inputs_embeds = self.decoder.get_input_embeddings()(decoder_input_ids)
decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
# Generation:
decoder_outputs = self.decoder(
inputs_embeds=decoder_inputs_embeds,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Loss:
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
special_token_ids,
prompt_attention_mask,
prompt_position_ids,
past_key_values=None,
use_cache=None,
**kwargs,
):
"""
Modification of:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
"""
report_attention_mask = (input_ids != self.decoder.config.pad_token_id).long()
if past_key_values is None:
# 4D attention mask:
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(prompt_attention_mask, report_attention_mask)
# Position identifiers accounting for padding:
report_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
report_position_ids.masked_fill_(report_attention_mask == 0, 1)
decoder_position_ids = torch.cat([prompt_position_ids, report_position_ids], dim=1)
# `inputs_embeds` are only to be used in the 1st generation step:
inputs_embeds = torch.cat([kwargs['decoder_inputs_embeds'], self.decoder.get_input_embeddings()(input_ids)], dim=1)
decoder_token_type_ids = self.token_ids_to_token_type_ids(
input_ids, special_token_ids,
[self.token_type_to_token_type_id['findings'], self.token_type_to_token_type_id['impression']],
)
decoder_token_type_ids = torch.cat(
[
kwargs['decoder_token_type_ids'],
decoder_token_type_ids,
],
dim=1,
) # Add image token type identifiers.
input_dict = {
'decoder_input_ids': input_ids,
'decoder_inputs_embeds': inputs_embeds,
'decoder_token_type_ids': decoder_token_type_ids,
}
else:
# 4D attention mask:
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(prompt_attention_mask, report_attention_mask)
# Position identifiers accounting for padding:
decoder_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
decoder_position_ids.masked_fill_(report_attention_mask == 0, 1)
# Always place token_ids_to_token_type_ids_past_key_values before input_ids = input_ids[:, remove_prefix_length:]:
decoder_token_type_ids = self.token_ids_to_token_type_ids_past_key_values(
input_ids,
special_token_ids,
[self.token_type_to_token_type_id['findings'], self.token_type_to_token_type_id['impression']],
)
decoder_position_ids = decoder_position_ids[:, -1:]
past_length = past_key_values[0][0].shape[2]
# Some generation methods only pass the last input ID:
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Keep only the final ID:
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
input_dict = {'decoder_input_ids': input_ids, 'decoder_token_type_ids': decoder_token_type_ids}
input_dict.update(
{
'decoder_attention_mask': decoder_attention_mask,
'decoder_position_ids': decoder_position_ids,
'past_key_values': past_key_values,
'use_cache': use_cache,
}
)
return input_dict
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections):
"""
Extract token type identifiers from the token identifiers.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the separation between sections.
token_type_id_section - token type identifier for each section.
Returns:
token_type_ids - token type identifiers.
"""
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
mbatch_size, seq_len = token_ids.shape
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
for i, j in enumerate(special_token_ids):
# Find first occurrence of special tokens that indicate the boundary between sections:
cols = (token_ids == j).int().argmax(dim=1)
rows = torch.arange(mbatch_size, device=token_ids.device)
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
cols += 1
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
# Indices to that correspond to the second sequence:
if rows.nelement() != 0:
ids = torch.stack([
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
y, seq_len, device=token_ids.device,
)
])
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
return token_type_ids
def token_ids_to_token_type_ids_past_key_values(self, token_ids, special_token_ids, token_type_id_sections):
"""
Extract token type identifiers from the token identifiers if past != None. Make sure to input all the
token_ids (e.g., do not input input_ids = input_ids[:, remove_prefix_length:] from prepare_inputs_for_generation).
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the separation between sections.
Returns:
token_type_ids - token type identifiers.
"""
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
token_ids = token_ids[:, :-1]
for i, j in enumerate(special_token_ids):
# Find first occurrence of special token, which indicates the boundary between sections:
exists = torch.any(token_ids == j, dim=1, keepdim=True)
token_type_ids[exists] = token_type_id_sections[i + 1]
return token_type_ids
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
"""
Tokenize the reports and creates the inputs and targets for teacher forcing.
Argument/s:
findings - findings sections.
impression - impression sections.
return_token_type_ids - return the token type identifiers.
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
Returns:
decoder_input_ids - the token identifiers for the input of the decoder.
decoder_attention_mask - the attention mask for the decoder_input_ids.
label_ids - the label token identifiers for the decoder.
"""
# Prepare the sections for the tokenizer by placing special tokens between each section:
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
zip(findings, impression)]
# Tokenize the report:
tokenized = tokenizer(
reports,
padding='longest',
truncation=True,
max_length=max_len + 1, # +1 to account for the bias between input and target.
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False,
).to(self.device)
# Modify for language modelling:
batch_dict = {
# Labels for the decoder (shifted right by one for autoregression):
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
# Remove last token identifier to match the sequence length of the labels:
'decoder_input_ids': tokenized['input_ids'][:, :-1],
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
}
return batch_dict
def tokenize_report_teacher_forcing_rev_a(self, tokenizer: PreTrainedTokenizerFast, max_len: int, findings: Optional[str] = None, impression: Optional[str] = None, reports: Optional[str] = None):
"""
Tokenize the reports and creates the inputs and targets for teacher forcing.
Argument/s:
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
findings - findings sections.
impression - impression sections.
reports - prepared reports, with special tokens and report sections.
Returns:
decoder_input_ids - the token identifiers for the input of the decoder.
decoder_attention_mask - the attention mask for the decoder_input_ids.
label_ids - the label token identifiers for the decoder.
"""
# Prepare the sections for the tokenizer by placing special tokens between each section:
if reports is None:
assert findings and impression, "If 'reports' is not defined, 'findings' and 'impression' need to be defined."
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
zip(findings, impression)]
# Tokenize the report:
tokenized = tokenizer(
reports,
padding='longest',
truncation=True,
max_length=max_len + 1, # +1 to account for the bias between input and target.
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False,
).to(self.device)
# Modify for language modelling:
batch_dict = {
# Labels for the decoder (shifted right by one for autoregression):
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
# Remove last token identifier to match the sequence length of the labels:
'decoder_input_ids': tokenized['input_ids'][:, :-1],
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
}
return batch_dict
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
"""
Split the token identifiers into sections, then convert the token identifiers into strings.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the end of each section.
tokenizer - Hugging Face tokenizer.
Returns:
token_type_ids - token type identifiers.
"""
_, seq_len = token_ids.shape
# The number of sections is the same as the number of special_token_ids:
num_sections = len(special_token_ids)
sections = {k: [] for k in range(num_sections)}
for i in token_ids:
prev_col = 0
for j, k in enumerate(special_token_ids):
# The maximum sequence length was exceeded, thus no more tokens:
if prev_col >= seq_len:
sections[j].append('')
continue
# Find first occurrence of special tokens that indicate the boundary between sections:
col = (i == k).int().argmax().item()
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
# the maximum sequence length):
if col == 0:
col = seq_len
# Extract section token identifiers:
section_token_ids = i[prev_col:col]
prev_col = col
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
sections[j].append(section_string)
return tuple(sections.values())
def tokenize_text_prompt(self, tokenizer: PreTrainedTokenizerFast, **kwargs):
"""
Tokenize the text columns from MIMIC-IV ED and MIMIC-CXR (excluding the findings and impression sections).
Time deltas for the input_ids are also prepared here.
Argument/s:
tokenizer - Hugging Face tokenizer.
Returns:
ed - dictionary containing the input_ids, token_type_ids, attention_mask and time_deltas for the ED module columns.
cxr - dictionary containing the input_ids, token_type_ids, and attention_mask for MIMIC-CXR columns.
"""
batch_size = len(kwargs['study_id'])
tokenized = {
'input_ids': {i: [] for i in range(batch_size)},
'token_type_ids': {i: [] for i in range(batch_size)},
'time_delta': {i: [] for i in range(batch_size)},
'attention_mask': torch.empty(batch_size, 0, 1, device=self.device),
}
prompt_text_columns = [f'{k}_{j}' if k != 'mimic_cxr_sectioned' else j for k, v in self.tables.items() if 'text_columns' in v for j in (v['text_columns'] if isinstance(v['text_columns'], list) else [v['text_columns']])] + ['prior_findings', 'prior_impression']
for i in prompt_text_columns:
if i in kwargs:
if f'{i}_time_delta' not in kwargs:
kwargs[f'{i}_time_delta'] = [[self.zero_time_delta_value for _ in j] if j is not None else None for j in kwargs[i]]
for x, (y, z) in enumerate(zip(kwargs[i], kwargs[f'{i}_time_delta'])):
if y is not None:
assert isinstance(y, list)
assert isinstance(z, list)
for text, time_delta in zip(y, z):
if text is not None:
tokenized['input_ids'][x].append(
tokenizer(text, add_special_tokens=False, return_tensors='pt')['input_ids'].to(device=self.device)
)
tokenized['token_type_ids'][x].append(
torch.full(
(1, tokenized['input_ids'][x][-1].shape[-1]),
self.token_type_to_token_type_id[i],
dtype=torch.long,
device=self.device,
)
)
tokenized['time_delta'][x].append(
torch.full(
(1, tokenized['input_ids'][x][-1].shape[-1]),
time_delta,
dtype=torch.float32,
device=self.device,
)
)
tokenized['input_ids'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, dtype=torch.long, device=self.device) for j in tokenized['input_ids'].values()]
tokenized['token_type_ids'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, dtype=torch.long, device=self.device) for j in tokenized['token_type_ids'].values()]
tokenized['time_delta'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, device=self.device) for j in tokenized['time_delta'].values()]
tokenized['input_ids'] = torch.nn.utils.rnn.pad_sequence(
tokenized['input_ids'], batch_first=True, padding_value=tokenizer.pad_token_id
)[:, :, 0]
tokenized['token_type_ids'] = torch.nn.utils.rnn.pad_sequence(
tokenized['token_type_ids'], batch_first=True, padding_value=0,
)[:, :, 0]
tokenized['attention_mask'] = (tokenized['input_ids'] != tokenizer.pad_token_id).int()
tokenized['time_delta'] = torch.nn.utils.rnn.pad_sequence(
tokenized['time_delta'], batch_first=True, padding_value=0,
)
return tokenized
def prepare_inputs(
self,
images,
tokenizer: PreTrainedTokenizerFast,
tokenized_report=None,
sep_token_id=None,
**batch,
):
"""
Tokenize the text columns from MIMIC-IV ED and MIMIC-CXR (excluding the findings and impression sections).
Argument/s:
images - images.
tokenizer - Hugging Face tokenizer.
tokenized_report - if training/teacher forcing, input the tokenized_report dict to include it in the prepared inputs.
separator_token_id - separator token identifier.
Returns:
inputs_embeds - input embeddings.
attention_mask - attention mask.
token_type_ids - token type identifiers.
position_ids - position identifiers.
bos_token_ids - bos_token_ids for generation.
"""
input_ids = []
inputs_embeds = []
token_type_ids = []
attention_mask = []
time_delta = []
position_ids = None
bos_token_ids = None
# Index and value columns:
batch_size = images.shape[0]
for k, v in self.tables.items():
if 'index_columns' in v or 'value_columns' in v:
if f'{k}_index_value_feats' not in batch:
batch[f'{k}_index_value_feats'] = torch.empty(batch_size, 0, self.luts[k]['total'], device=self.device)
inputs_embeds.append(
getattr(self, f'{k}_index_value_encoder')(batch[f'{k}_index_value_feats'])
)
token_type_ids.append(batch[f'{k}_index_value_token_type_ids'] if f'{k}_index_value_token_type_ids' in batch else torch.empty(batch_size, 0, dtype=torch.long, device=self.device))
attention_mask.append(batch[f'{k}_index_value_mask'] if f'{k}_index_value_mask' in batch else torch.empty(batch_size, 0, dtype=torch.long, device=self.device))
if f'{k}_index_value_time_delta' in batch:
time_delta.append(batch[f'{k}_index_value_time_delta'])
else:
time_delta_index_value = torch.zeros(*batch[f'{k}_index_value_mask'].shape, 1, device=self.device) if f'{k}_index_value_mask' in batch else torch.empty(batch_size, 0, 1, device=self.device)
time_delta.append(time_delta_index_value)
# Tokenize text columns for prompt:
tokenized = self.tokenize_text_prompt(tokenizer, **batch)
input_ids.append(tokenized['input_ids'])
token_type_ids.append(tokenized['token_type_ids'])
attention_mask.append(tokenized['attention_mask'])
time_delta.append(tokenized['time_delta'])
# Image encoder:
encoder_outputs = self.encoder(images)
inputs_embeds.append(encoder_outputs[0])
inputs_per_image = encoder_outputs[0].shape[-2] // images.shape[1]
time_delta_image_features = torch.tensor(batch['image_time_deltas'], device=self.device).repeat_interleave(inputs_per_image, dim=1)
token_type_ids.append(
torch.where(
torch.logical_or(
time_delta_image_features == self.zero_time_delta_value,
time_delta_image_features == self.inf_time_delta_value,
),
self.token_type_to_token_type_id['image'],
self.token_type_to_token_type_id['prior_image'],
),
)
attention_mask.append(encoder_outputs[1])
time_delta.append(time_delta_image_features[:, :, None])
# Compute embeddings from token identifiers:
input_ids = torch.cat(input_ids, dim=1)
inputs_embeds.append(self.decoder.get_input_embeddings()(input_ids))
# Concatentate time deltas and input embeddings before adding time delta embedding to prompt:
time_delta = torch.cat(time_delta, dim=1)
inputs_embeds = torch.cat(inputs_embeds, dim=1)
# Add time delta embeddings to prompt:
if time_delta.shape[1] > 0 and self.decoder.config.add_time_deltas:
time_delta = time_delta.to(dtype=inputs_embeds.dtype)
inputs_embeds += self.time_delta_encoder(time_delta)
# Concatentate the attention mask:
attention_mask = torch.cat(attention_mask, dim=1)
# Position identifiers:
position_ids = self.position_ids_from_time_deltas_and_attention_mask(time_delta, attention_mask)
# Tokenize report:
if tokenized_report is not None:
inputs_embeds = torch.cat([inputs_embeds, self.decoder.get_input_embeddings()(tokenized_report['decoder_input_ids'])], dim=1)
report_token_type_ids = self.token_ids_to_token_type_ids(
token_ids=tokenized_report['decoder_input_ids'],
special_token_ids=[sep_token_id],
token_type_id_sections=[self.token_type_to_token_type_id['findings'], self.token_type_to_token_type_id['impression']],
)
token_type_ids.append(report_token_type_ids)
# Position identifiers accounting for padding:
report_position_ids = tokenized_report['decoder_attention_mask'].cumsum(-1) + position_ids.max(dim=1).values[:, None]
report_position_ids.masked_fill_(tokenized_report['decoder_attention_mask'] == 0, 1)
position_ids = torch.cat([position_ids, report_position_ids], dim=1)
# 4D attention mask:
attention_mask = self.create_4d_attention_mask_mixed_causality(attention_mask, tokenized_report['decoder_attention_mask'])
# attention_mask_diagonal = torch.diagonal(attention_mask[:, 0], dim1=1, dim2=2)
else:
# BOS token identifiers for inference/generation:
bos_token_ids = torch.full((encoder_outputs[0].shape[0], 1), tokenizer.bos_token_id, dtype=torch.long, device=self.device)
# Concatentate the token type identifiers:
token_type_ids = torch.cat(token_type_ids, dim=1)
assert inputs_embeds.shape[1] == attention_mask.shape[-1]
assert inputs_embeds.shape[1] == token_type_ids.shape[1]
return inputs_embeds, attention_mask, token_type_ids, position_ids, bos_token_ids
@staticmethod
def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
report_seq_len = causal_2d_attention_mask.shape[-1]
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
# Upper left of attention matrix:
upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
upper_left = upper_left * non_causal_2d_attention_mask
upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
causal_mask = torch.tril(
torch.ones(
(
report_seq_len,
report_seq_len,
),
dtype=torch.long,
device=causal_2d_attention_mask.device,
),
)
# Lower right of attention matrix:
lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
lower_right = lower_right * causal_mask
# Upper right of attention matrix:
upper_right = torch.zeros(
causal_2d_attention_mask.shape[0],
1,
prompt_seq_len,
report_seq_len,
dtype=torch.long,
device=causal_2d_attention_mask.device,
)
# Lower left of attention matrix:
lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
left = torch.cat((upper_left, lower_left), dim=2)
right = torch.cat((upper_right, lower_right), dim=2)
mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
return mixed_causality_4d_attention_mask
@staticmethod
def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
return mixed_causality_4d_attention_mask
def position_ids_from_time_deltas_and_attention_mask(self, time_deltas, attention_mask):
mask_value = torch.finfo(time_deltas.dtype).max if self.decoder.config.time_delta_monotonic_inversion else torch.finfo(time_deltas.dtype).min
masked_time_deltas = torch.where(attention_mask == 1, time_deltas[:, :, 0], mask_value)
_, col_indices = torch.sort(masked_time_deltas, descending=not self.decoder.config.time_delta_monotonic_inversion)
num_rows, num_cols, _ = time_deltas.shape
row_indices = torch.arange(num_rows, device=time_deltas.device).view(-1, 1).repeat(1, num_cols).view(-1)
position_ids = torch.zeros_like(col_indices, device=time_deltas.device)
position_ids[row_indices, col_indices.flatten()] = torch.arange(num_cols, device=time_deltas.device)[None, :].expand(num_rows, -1).flatten()
position_ids.masked_fill_(attention_mask == 0, 1) # Following: https://github.com/huggingface/transformers/blob/c5f0288bc7d76f65996586f79f69fba8867a0e67/src/transformers/models/llama/modeling_llama.py#L1285
return position_ids
def get_dataset(self, dataset_path, train_transforms, test_transforms, max_train_images_per_study, study_id_split='mimic_iv_ed_mimic_cxr_jpg', test_set_only=False):
def train_set_transform(batch):
# Randomly select max_train_images_per_study if the number of images for a study exceeds max_train_images_per_study.
keys = ['images', 'dicom_id']
keys = keys + self.tables['mimic_cxr_2_0_0_metadata']['index_columns'] if 'mimic_cxr_2_0_0_metadata' in self.tables else keys
for i in range(len(batch['images'])):
if len(batch['images'][i]) > max_train_images_per_study:
paired = list(zip(*(batch[key][i] for key in keys)))
sampled_pairs = random.sample(paired, max_train_images_per_study)
unzipped_samples = zip(*sampled_pairs)
for key, values in zip(keys, unzipped_samples):
batch[key][i] = list(values)
batch['images'] = [[decode_image(torch.frombuffer(bytearray(j), dtype=torch.uint8)) for j in i] for i in batch['images']]
# Sort based on ViewPosition:
batch['images'] = [list(zip(*sorted(zip(i, v), key=lambda x: VIEW_ORDER.index(x[1]))))[0] for i, v in zip(batch['images'], batch['ViewPosition'])]
batch['images'] = [torch.stack([train_transforms(j) for j in i]) for i in batch['images']]
max_size = max(i.shape[0] for i in batch['images'])
batch['image_time_deltas'] = [[self.zero_time_delta_value if j < i.shape[0] else self.inf_time_delta_value for j in range(max_size)] for i in batch['images']]
batch['images'] = torch.nn.utils.rnn.pad_sequence(batch['images'], batch_first=True, padding_value=0.0)
for k, v in self.tables.items():
if 'index_columns' in v or 'value_columns' in v:
batch[f'{k}_index_value_feats'], batch[f'{k}_index_value_token_type_ids'], batch[f'{k}_index_value_time_delta'], batch[f'{k}_index_value_mask'] = self.prepare_index_value_feats(k, batch)
for k, v in self.tables.items():
if 'text_columns' in v:
for i in v['text_columns']:
key = f'{k}_{i}' if not k == 'mimic_cxr_sectioned' else i
batch[key], batch[f'{key}_time_delta'] = self.prepare_text_prompt(k, i, batch)
return batch
def test_set_transform(batch):
batch['images'] = [[decode_image(torch.frombuffer(bytearray(j), dtype=torch.uint8)) for j in i] for i in batch['images']]
# Sort based on ViewPosition:
batch['images'] = [list(zip(*sorted(zip(i, v), key=lambda x: VIEW_ORDER.index(x[1]))))[0] for i, v in zip(batch['images'], batch['ViewPosition'])]
batch['images'] = [torch.stack([test_transforms(j) for j in i]) for i in batch['images']]
max_size = max(i.shape[0] for i in batch['images'])
batch['image_time_deltas'] = [[self.zero_time_delta_value if j < i.shape[0] else self.inf_time_delta_value for j in range(max_size)] for i in batch['images']]
batch['images'] = torch.nn.utils.rnn.pad_sequence(batch['images'], batch_first=True, padding_value=0.0)
for k, v in self.tables.items():
if 'index_columns' in v or 'value_columns' in v:
batch[f'{k}_index_value_feats'], batch[f'{k}_index_value_token_type_ids'], batch[f'{k}_index_value_time_delta'], batch[f'{k}_index_value_mask'] = self.prepare_index_value_feats(k, batch)
for k, v in self.tables.items():
if 'text_columns' in v:
for i in v['text_columns']:
key = f'{k}_{i}' if not k == 'mimic_cxr_sectioned' else i
batch[key], batch[f'{key}_time_delta'] = self.prepare_text_prompt(k, i, batch)
return batch
dataset = datasets.load_from_disk(dataset_path)
# Train set:
if not test_set_only:
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'{study_id_split}_train_study_ids.json'), 'r') as f:
study_ids = json.load(f)
train_set = dataset['train']
train_set_study_ids = train_set['study_id']
index_map = {study_id: idx for idx, study_id in enumerate(train_set_study_ids)}
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
indices.sort()
train_set = PriorsDataset(train_set, self.decoder.config.history, self.time_delta_map)
train_set.set_transform(train_set_transform)
train_set = Subset(train_set, indices)
else:
train_set = None
# Validation set:
if not test_set_only:
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'{study_id_split}_validate_study_ids.json'), 'r') as f:
study_ids = json.load(f)
val_set = dataset['validate']
val_set_study_ids = val_set['study_id']
index_map = {study_id: idx for idx, study_id in enumerate(val_set_study_ids)}
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
indices.sort()
val_set = PriorsDataset(val_set, self.decoder.config.history, self.time_delta_map)
val_set.set_transform(test_set_transform)
val_set = Subset(val_set, indices)
else:
val_set = None
# Test set:
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'{study_id_split}_test_study_ids.json'), 'r') as f:
study_ids = json.load(f)
test_set = dataset['test']
test_set_study_ids = test_set['study_id']
index_map = {study_id: idx for idx, study_id in enumerate(test_set_study_ids)}
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
indices.sort()
test_set = PriorsDataset(test_set, self.decoder.config.history, self.time_delta_map)
test_set.set_transform(test_set_transform)
test_set = Subset(test_set, indices)
return train_set, val_set, test_set
def get_stage_1_dataset(self, dataset_path, train_transforms, test_transforms, max_train_images_per_study):
def train_set_transform(batch):
# Randomly select max_train_images_per_study if the number of images for a study exceeds max_train_images_per_study.
for i in range(len(batch['images'])):
if len(batch['images'][i]) > max_train_images_per_study:
paired = list(zip(batch['images'][i], batch['ViewPosition'][i]))
sampled_pairs = random.sample(paired, max_train_images_per_study)
batch['images'][i], batch['ViewPosition'][i] = zip(*sampled_pairs)
batch['images'] = [[decode_image(torch.frombuffer(bytearray(j), dtype=torch.uint8)) for j in i] for i in batch['images']]
# Sort based on ViewPosition:
batch['images'] = [list(zip(*sorted(zip(i, v), key=lambda x: VIEW_ORDER.index(x[1]))))[0] for i, v in zip(batch['images'], batch['ViewPosition'])]
batch['images'] = [torch.stack([train_transforms(j) for j in i]) for i in batch['images']]
max_size = max(i.shape[0] for i in batch['images'])
batch['image_time_deltas'] = [[self.zero_time_delta_value if j < i.shape[0] else self.inf_time_delta_value for j in range(max_size)] for i in batch['images']]
batch['images'] = torch.nn.utils.rnn.pad_sequence(batch['images'], batch_first=True, padding_value=0.0)
return batch
def test_set_transform(batch):
batch['images'] = [[decode_image(torch.frombuffer(bytearray(j), dtype=torch.uint8)) for j in i] for i in batch['images']]
# Sort based on ViewPosition:
batch['images'] = [list(zip(*sorted(zip(i, v), key=lambda x: VIEW_ORDER.index(x[1]))))[0] for i, v in zip(batch['images'], batch['ViewPosition'])]
batch['images'] = [torch.stack([test_transforms(j) for j in i]) for i in batch['images']]
max_size = max(i.shape[0] for i in batch['images'])
batch['image_time_deltas'] = [[self.zero_time_delta_value if j < i.shape[0] else self.inf_time_delta_value for j in range(max_size)] for i in batch['images']]
batch['images'] = torch.nn.utils.rnn.pad_sequence(batch['images'], batch_first=True, padding_value=0.0)
return batch
dataset = datasets.load_from_disk(dataset_path)
# Train set:
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_cxr_jpg_train_study_ids.json'), 'r') as f:
study_ids = json.load(f)
train_set = dataset['train']
train_set_study_ids = train_set['study_id']
index_map = {study_id: idx for idx, study_id in enumerate(train_set_study_ids)}
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
indices.sort()
train_set = PriorsDataset(train_set, self.decoder.config.history, self.time_delta_map)
train_set.set_transform(train_set_transform)
train_set = Subset(train_set, indices)
# Validation set:
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_cxr_jpg_validate_study_ids.json'), 'r') as f:
study_ids = json.load(f)
val_set = dataset['validate']
val_set_study_ids = val_set['study_id']
index_map = {study_id: idx for idx, study_id in enumerate(val_set_study_ids)}
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
indices.sort()
val_set = PriorsDataset(val_set, self.decoder.config.history, self.time_delta_map)
val_set.set_transform(test_set_transform)
val_set = Subset(val_set, indices)
# Test set:
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_cxr_jpg_test_study_ids.json'), 'r') as f:
study_ids = json.load(f)
test_set = dataset['test']
test_set_study_ids = test_set['study_id']
index_map = {study_id: idx for idx, study_id in enumerate(test_set_study_ids)}
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
indices.sort()
test_set = PriorsDataset(test_set, self.decoder.config.history, self.time_delta_map)
test_set.set_transform(test_set_transform)
test_set = Subset(test_set, indices)
return train_set, val_set, test_set
def prepare_index_value_feats(self, table, batch):
index_value_columns = (self.tables[table].get('index_columns', []) + self.tables[table].get('value_columns', []))
index_value_columns = [f'{table}_{i}' for i in index_value_columns] if table != 'mimic_cxr_2_0_0_metadata' else index_value_columns
# Map to indices with lookup table:
if 'index_columns' in self.tables[table]:
for i in self.tables[table]['index_columns']:
k = f'{table}_{i}' if not table == 'mimic_cxr_2_0_0_metadata' else i
batch[k] = [
[self.luts[table][i][str(k)] if k is not None else None for k in j] if j is not None else None for j in batch[k]
]
batch_index_value_feats_list = []
batch_token_type_ids_list = []
batch_time_deltas_list = []
for batch_idx in range(len(batch['study_id'])):
if any([batch[k][batch_idx] for k in index_value_columns]):
num_rows = [len(batch[i][batch_idx]) for i in index_value_columns]
assert all(x == num_rows[0] for x in num_rows)
num_rows = num_rows[0]
# The y-index and the datetime for each group:
if isinstance(batch[self.tables[table]['groupby']][batch_idx], list):
y_indices = [d.setdefault(x, len(d)) for d in [{}] for x in batch[self.tables[table]['groupby']][batch_idx]]
datetime = [j for i, j in enumerate(batch[self.tables[table]['time_column']][batch_idx]) if j not in batch[self.tables[table]['time_column']][batch_idx][:i]]
assert len(set(y_indices)) == len(datetime)
else:
y_indices = [0] * num_rows
datetime = batch[self.tables[table]['time_column']][batch_idx] if 'time_column' in self.tables[table] else [batch['latest_study_datetime'][batch_idx]]
time_deltas = torch.tensor([compute_time_delta(i, batch['latest_study_datetime'][batch_idx], self.time_delta_map, to_tensor=False) for i in datetime])[:, None]
tensor = torch.zeros(max(y_indices) + 1, self.luts[table]['total'])
# Index columns to feats:
if 'index_columns' in self.tables[table]:
for i in self.tables[table]['index_columns']:
k = f'{table}_{i}' if not table == 'mimic_cxr_2_0_0_metadata' else i
y_indices_column = [y_idx for y_idx, x_idx in zip(y_indices, batch[k][batch_idx]) if x_idx is not None]
x_indices_column = [x_idx for x_idx in batch[k][batch_idx] if x_idx is not None]
tensor[y_indices_column, x_indices_column] = 1.0
if 'value_columns' in self.tables[table]:
for i in self.tables[table]['value_columns']:
k = f'{table}_{i}' if not table == 'mimic_cxr_2_0_0_metadata' else i
y_indices_column = [y_idx for y_idx, value in zip(y_indices, batch[k][batch_idx]) if value is not None]
x_indices_column = [self.luts[table][i] for value in batch[k][batch_idx] if value is not None]
values = [value for value in batch[k][batch_idx] if value is not None]
tensor[y_indices_column, x_indices_column] = torch.tensor(values, dtype=tensor.dtype)
assert not torch.isnan(tensor).any()
else:
tensor = torch.empty(0, self.luts[table]['total'])
time_deltas = torch.empty(0, 1)
batch_index_value_feats_list.append(tensor)
batch_token_type_ids_list.append(torch.full(
[tensor.shape[0]],
self.token_type_to_token_type_id[table],
dtype=torch.long,
)
)
batch_time_deltas_list.append(time_deltas)
assert tensor.shape[0] == batch_token_type_ids_list[-1].shape[0]
assert tensor.shape[0] == time_deltas.shape[0]
batch_index_value_feats = torch.nn.utils.rnn.pad_sequence(batch_index_value_feats_list, batch_first=True, padding_value=-1) # Pad value of -1 is not ideal. Need to use something else.
batch_token_type_ids = torch.nn.utils.rnn.pad_sequence(batch_token_type_ids_list, batch_first=True, padding_value=0)
batch_time_deltas = torch.nn.utils.rnn.pad_sequence(batch_time_deltas_list, batch_first=True, padding_value=0)
batch_mask = (batch_index_value_feats != -1).any(dim=-1).int()
return batch_index_value_feats, batch_token_type_ids, batch_time_deltas, batch_mask
def prepare_text_prompt(self, table, column, batch):
key = f'{table}_{column}' if not table == 'mimic_cxr_sectioned' else column
batch_text_list = []
batch_time_deltas_list = []
for batch_idx in range(len(batch['study_id'])):
if batch[key][batch_idx]:
num_rows = len(batch[key][batch_idx])
# The y-index and the datetime for each group:
if isinstance(batch[self.tables[table]['groupby']][batch_idx], list):
y_indices = [d.setdefault(x, len(d)) for d in [{}] for x in batch[self.tables[table]['groupby']][batch_idx]]
datetime = [j for i, j in enumerate(batch[self.tables[table]['time_column']][batch_idx]) if j not in batch[self.tables[table]['time_column']][batch_idx][:i]]
assert len(set(y_indices)) == len(datetime)
else:
y_indices = [0] * num_rows
datetime = batch[self.tables[table]['time_column']][batch_idx] if 'time_column' in self.tables[table] else [batch['latest_study_datetime'][batch_idx]]
# Remove None values:
text_rows = batch[key][batch_idx] if isinstance(batch[key][batch_idx], list) else [batch[key][batch_idx]]
y_indices = [i for i, j in zip(y_indices, text_rows) if j is not None]
text_rows = [i for i in text_rows if i is not None]
datetime = [datetime[i] for i in set(y_indices)]
if text_rows:
# Those in the same group (or those with the same y-index) get joined as the same string:
batch_text_list.append([', '.join([text_rows[j] for j in range(len(y_indices)) if y_indices[j] == k]) + '.' for k in set(y_indices)])
batch_time_deltas_list.append([compute_time_delta(i, batch['latest_study_datetime'][batch_idx], self.time_delta_map, to_tensor=False) for i in datetime])
assert len(batch_time_deltas_list[-1]) == len(batch_text_list[-1])
else:
batch_text_list.append([])
batch_time_deltas_list.append([])
else:
batch_text_list.append([])
batch_time_deltas_list.append([])
return batch_text_list, batch_time_deltas_list
@staticmethod
def collate_fn(batch):
keys = set().union(*(d.keys() for d in batch))
batch = {j: [i.setdefault(j, None) for i in batch] for j in keys}
batch = {k: torch.stack(v) if isinstance(v[0], torch.Tensor) else v for k, v in batch.items()}
return batch
@staticmethod
def prepare_dataset(physionet_dir: str, database_dir: str):
prepare_dataset(physionet_dir=physionet_dir, database_dir=database_dir)
|