File size: 17,305 Bytes
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import functools
import os
import re
from collections import OrderedDict
from typing import Dict, List, Optional

import duckdb
import pandas as pd
import torch

from .tables import ed_cxr_token_type_ids, ed_module_tables, mimic_cxr_tables


def mimic_cxr_text_path(dir, subject_id, study_id, ext='txt'):
    return os.path.join(dir, 'p' + str(subject_id)[:2], 'p' + str(subject_id),
                        's' + str(study_id) + '.' + ext)

def format(text):
    # Remove newline, tab, repeated whitespaces, and leading and trailing whitespaces:
    text = re.sub(r'\n|\t', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    text = text.strip()
    return text


def rgetattr(obj, attr, *args):
    def _getattr(obj, attr):
        return getattr(obj, attr, *args)
    return functools.reduce(_getattr, [obj] + attr.split('.'))
        

def df_to_tensor_index_columns(
        df: pd.DataFrame, 
        tensor: torch.Tensor, 
        group_idx_to_y_idx: Dict,
        groupby: str, 
        index_columns: List[str],
    ):
    """
    Converts a dataframe with index columns to a tensor, where each index of the y-axis is determined by the 
    'groupby' column.
    """
    assert len(group_idx_to_y_idx) == tensor.shape[0]
    all_columns = index_columns + [groupby]
    y_indices = [group_idx_to_y_idx[row[groupby]] for _, row in df[all_columns].iterrows() for i in index_columns if row[i] == row[i]]
    x_indices = [row[i] for _, row in df[all_columns].iterrows() for i in index_columns if row[i] == row[i]]
    tensor[y_indices, x_indices] = 1.0
    return tensor


def df_to_tensor_value_columns(
        df: pd.DataFrame, 
        tensor: torch.Tensor, 
        group_idx_to_y_idx: Dict,
        groupby: str, 
        value_columns: List[str], 
        value_column_to_idx: Dict,
    ):
    """
    Converts a dataframe with value columns to a tensor, where each index of the y-axis is determined by the 
    'groupby' column. The x-index is determined by a dictionary using the column name.
    """
    assert len(group_idx_to_y_idx) == tensor.shape[0]
    all_columns = value_columns + [groupby]
    y_indices = [group_idx_to_y_idx[row[groupby]] for _, row in df[all_columns].iterrows() for i in value_columns if row[i] == row[i]]
    x_indices = [value_column_to_idx[i] for _, row in df[all_columns].iterrows() for i in value_columns if row[i] == row[i]]
    element_value = [row[i] for _, row in df[all_columns].iterrows() for i in value_columns if row[i] == row[i]]
    tensor[y_indices, x_indices] = torch.tensor(element_value, dtype=tensor.dtype)
    return tensor


class EDCXRSubjectRecords:
    def __init__(
        self, 
        database_path: str, 
        dataset_dir: Optional[str] = None, 
        reports_dir: Optional[str] = None, 
        token_type_ids_starting_idx: Optional[int] = None,
        time_delta_map = lambda x: x,
        debug: bool = False
    ):

        self.database_path = database_path
        self.dataset_dir = dataset_dir
        self.reports_dir = reports_dir
        self.time_delta_map = time_delta_map
        self.debug = debug

        self.connect = duckdb.connect(self.database_path, read_only=True)

        self.streamlit_flag = False

        self.clear_start_end_times()

        # Module configurations:
        self.ed_module_tables = ed_module_tables
        self.mimic_cxr_tables = mimic_cxr_tables

        lut_info = self.connect.sql("FROM lut_info").df()

        for k, v in (self.ed_module_tables | self.mimic_cxr_tables).items():
            if v.load and (v.value_columns or v.index_columns):
                v.value_column_to_idx = {}
                if v.index_columns:
                    v.total_indices = lut_info[lut_info['table_name'] == k]['end_index'].item() + 1
                else:
                    v.total_indices = 0
                for i in v.value_columns:
                    v.value_column_to_idx[i] = v.total_indices
                    v.total_indices += 1

        # Token type identifiers:
        self.token_type_to_token_type_id = ed_cxr_token_type_ids
        if token_type_ids_starting_idx is not None:
            self.token_type_to_token_type_id = {k: v + token_type_ids_starting_idx for k, v in self.token_type_to_token_type_id.items()}

    def __len__(self):
        return len(self.subject_ids)
    
    def clear_start_end_times(self):
        self.start_time, self.end_time = None, None

    def admission_ed_stay_ids(self, hadm_id):
        if hadm_id:
            return self.connect.sql(f'SELECT stay_id FROM edstays WHERE subject_id = {self.subject_id} AND hadm_id = {hadm_id}').df()['stay_id'].tolist()
        else:
            return self.connect.sql(f'SELECT stay_id FROM edstays WHERE subject_id = {self.subject_id}').df()['stay_id'].tolist()
    
    def subject_study_ids(self):
        mimic_cxr = self.connect.sql(
            f'SELECT study_id, study_datetime FROM mimic_cxr WHERE subject_id = {self.subject_id}',
        ).df()
        if self.start_time and self.end_time:
            mimic_cxr = self.filter_admissions_by_time_span(mimic_cxr, 'study_datetime')
        mimic_cxr = mimic_cxr.drop_duplicates(subset=['study_id']).sort_values(by='study_datetime')
        return dict(zip(mimic_cxr['study_id'], mimic_cxr['study_datetime']))

    def load_ed_module(self, hadm_id=None, stay_id=None, reference_time=None):
        if not self.start_time and stay_id is not None:
            edstay = self.connect.sql(
                f"""
                SELECT intime, outtime
                FROM edstays
                WHERE stay_id = {stay_id}
                """
            ).df()
            self.start_time = edstay['intime'].item()
            self.end_time = edstay['outtime'].item()
        self.load_module(self.ed_module_tables, hadm_id=hadm_id, stay_id=stay_id, reference_time=reference_time)

    def load_mimic_cxr(self, study_id, reference_time=None):
        self.load_module(self.mimic_cxr_tables, study_id=study_id, reference_time=reference_time)
        if self.streamlit_flag:
            self.report_path = mimic_cxr_text_path(self.reports_dir, self.subject_id, study_id, 'txt')

    def load_module(self, module_dict, hadm_id=None, stay_id=None, study_id=None, reference_time=None):
        for k, v in module_dict.items():

            if self.streamlit_flag or v.load:

                query = f"FROM {k}"

                conditions = []
                if hasattr(self, 'subject_id') and v.subject_id_filter:
                    conditions.append(f"subject_id={self.subject_id}")
                if v.hadm_id_filter:
                    assert hadm_id is not None
                    conditions.append(f"hadm_id={hadm_id}")
                if v.stay_id_filter:
                    assert stay_id is not None
                    conditions.append(f"stay_id={stay_id}")
                if v.study_id_filter:
                    assert study_id is not None
                    conditions.append(f"study_id={study_id}")
                if v.mimic_cxr_sectioned:
                    assert study_id is not None
                    conditions.append(f"study='s{study_id}'")
                ands = ['AND'] * (len(conditions) * 2 - 1)
                ands[0::2] = conditions

                if conditions:
                    query += " WHERE ("
                    query += ' '.join(ands) 
                    query += ")"

                df = self.connect.sql(query).df()

                if v.load:

                    columns = [v.groupby] + v.time_columns + v.index_columns + v.text_columns + v.value_columns + v.target_sections

                    # Use the starting time of the stay/admission as the time:
                    if v.use_start_time:
                        df['start_time'] = self.start_time
                        columns += ['start_time']

                    if reference_time is not None:
                        time_column = v.time_columns[-1] if not v.use_start_time else 'start_time'

                        # Remove rows that are after the reference time to maintain causality:
                        df = df[df[time_column] < reference_time]

                if self.streamlit_flag:
                    setattr(self, k, df)

                if v.load:
                    columns = list(dict.fromkeys(columns))  # remove repetitions.
                    df = df.drop(columns=df.columns.difference(columns), axis=1)
                    setattr(self, f'{k}_feats', df)

    def return_ed_module_features(self, stay_id, reference_time=None):
        example_dict = {}
        if stay_id is not None:
            self.load_ed_module(stay_id=stay_id, reference_time=reference_time)
            for k, v in self.ed_module_tables.items():
                if v.load:

                    df = getattr(self, f'{k}_feats')

                    if self.debug:
                        example_dict.setdefault('ed_tables', []).append(k)

                    if not df.empty:
                        
                        assert f'{k}_index_value_feats' not in example_dict

                        # The y-index and the time for each group:
                        time_column = v.time_columns[-1] if not v.use_start_time else 'start_time'
                        group_idx_to_y_idx, group_idx_to_datetime = OrderedDict(), OrderedDict()
                        groups = df.dropna(subset=v.index_columns + v.value_columns + v.text_columns, axis=0, how='all')
                        groups = groups.drop_duplicates(subset=[v.groupby])[list(dict.fromkeys([v.groupby, time_column]))]
                        groups = groups.reset_index(drop=True)
                        for i, row in groups.iterrows():
                            group_idx_to_y_idx[row[v.groupby]] = i
                            group_idx_to_datetime[row[v.groupby]] = row[time_column]

                        if (v.index_columns or v.value_columns) and group_idx_to_y_idx:
                            example_dict[f'{k}_index_value_feats'] = torch.zeros(len(group_idx_to_y_idx), v.total_indices)
                            if v.index_columns:
                                example_dict[f'{k}_index_value_feats'] = df_to_tensor_index_columns(
                                    df=df, 
                                    tensor=example_dict[f'{k}_index_value_feats'], 
                                    group_idx_to_y_idx=group_idx_to_y_idx, 
                                    groupby=v.groupby, 
                                    index_columns=v.index_columns,
                                )
                            if v.value_columns:
                                example_dict[f'{k}_index_value_feats'] = df_to_tensor_value_columns(
                                    df=df, 
                                    tensor=example_dict[f'{k}_index_value_feats'],
                                    group_idx_to_y_idx=group_idx_to_y_idx,
                                    groupby=v.groupby, 
                                    value_columns=v.value_columns,
                                    value_column_to_idx=v.value_column_to_idx
                                )

                            example_dict[f'{k}_index_value_token_type_ids'] = torch.full(
                                [example_dict[f'{k}_index_value_feats'].shape[0]], 
                                self.token_type_to_token_type_id[k], 
                                dtype=torch.long, 
                            )

                            event_times = list(group_idx_to_datetime.values())
                            assert all([i == i for i in event_times])
                            time_delta = [self.compute_time_delta(i, reference_time) for i in event_times]
                            example_dict[f'{k}_index_value_time_delta'] = torch.tensor(time_delta)[:, None]

                            assert example_dict[f'{k}_index_value_feats'].shape[0] == example_dict[f'{k}_index_value_time_delta'].shape[0]

                        if v.text_columns:
                            for j in group_idx_to_y_idx.keys():
                                group_text = df[df[v.groupby] == j]
                                for i in v.text_columns:

                                    column_text = [format(k) for k in list(dict.fromkeys(group_text[i].tolist())) if k is not None]

                                    if column_text:
                        
                                        example_dict.setdefault(f'{k}_{i}', []).append(f"{', '.join(column_text)}.")

                                        event_times = group_text[time_column].iloc[0]
                                        time_delta = self.compute_time_delta(event_times, reference_time, to_tensor=False)
                                        example_dict.setdefault(f'{k}_{i}_time_delta', []).append(time_delta)

        return example_dict

    def return_mimic_cxr_features(self, study_id, reference_time=None):
        example_dict = {}
        if study_id is not None:
            self.load_mimic_cxr(study_id=study_id, reference_time=reference_time)
            for k, v in self.mimic_cxr_tables.items():
                if v.load:

                    df = getattr(self, f'{k}_feats')

                    if self.debug:
                        example_dict.setdefault('mimic_cxr_inputs', []).append(k)

                    if not df.empty:

                        # The y-index for each group:
                        group_idx_to_y_idx = OrderedDict()
                        groups = df.dropna(
                            subset=v.index_columns + v.value_columns + v.text_columns + v.target_sections, 
                            axis=0, 
                            how='all'
                        )
                        groups = groups.drop_duplicates(subset=[v.groupby])[[v.groupby]]
                        groups = groups.reset_index(drop=True)
                        for i, row in groups.iterrows():
                            group_idx_to_y_idx[row[v.groupby]] = i
                        
                        if v.index_columns and group_idx_to_y_idx:

                            example_dict[f'{k}_index_value_feats'] = torch.zeros(len(group_idx_to_y_idx), v.total_indices)
                            if v.index_columns:
                                example_dict[f'{k}_index_value_feats'] = df_to_tensor_index_columns(
                                    df=df, 
                                    tensor=example_dict[f'{k}_index_value_feats'], 
                                    group_idx_to_y_idx=group_idx_to_y_idx, 
                                    groupby=v.groupby, 
                                    index_columns=v.index_columns,
                                )
                        
                            example_dict[f'{k}_index_value_token_type_ids'] = torch.full(
                                [example_dict[f'{k}_index_value_feats'].shape[0]], 
                                self.token_type_to_token_type_id[k], 
                                dtype=torch.long, 
                            )

                    if v.text_columns:
                        for j in group_idx_to_y_idx.keys():
                            group_text = df[df[v.groupby] == j]
                            for i in v.text_columns:
                                column_text = [format(k) for k in list(dict.fromkeys(group_text[i].tolist())) if k is not None]
                                if column_text:
                                    example_dict.setdefault(f'{i}', []).append(f"{', '.join(column_text)}.")

                    if v.target_sections:
                        for j in group_idx_to_y_idx.keys():
                            group_text = df[df[v.groupby] == j]
                            for i in v.target_sections:
                                column_text = [format(k) for k in list(dict.fromkeys(group_text[i].tolist())) if k is not None]
                                assert len(column_text) == 1
                                example_dict[i] = column_text[-1]

        return example_dict

    def compute_time_delta(self, event_time, reference_time, denominator = 3600, to_tensor=True):
        """
        How to we transform time-delta inputs? It appears that minutes are used as the input to 
        a weight matrix in "Self-Supervised Transformer for Sparse and Irregularly Sampled Multivariate 
        Clinical Time-Series". This is almost confirmed by the CVE class defined here:
        https://github.com/sindhura97/STraTS/blob/main/strats_notebook.ipynb, where the input has 
        a size of one.
        """
        time_delta = reference_time - event_time
        time_delta = time_delta.total_seconds() / (denominator)
        assert isinstance(time_delta, float), f'time_delta should be float, not {type(time_delta)}.'
        if time_delta < 0:
            raise ValueError(f'time_delta should be greater than or equal to zero, not {time_delta}.')
        time_delta = self.time_delta_map(time_delta)
        if to_tensor: 
            time_delta = torch.tensor(time_delta)
        return time_delta

    def filter_admissions_by_time_span(self, df, time_column):
        return df[(df[time_column] > self.start_time) & (df[time_column] <= self.end_time)]