File size: 5,263 Bytes
6f29ffd 677dccc 6f7f115 4a744a8 6f7f115 4a744a8 6f7f115 677dccc 406c924 9034591 677dccc 6da7bd7 677dccc 6da7bd7 677dccc 6da7bd7 677dccc 6da7bd7 9034591 2a57da7 406c924 677dccc 406c924 677dccc 4caed3b 406c924 677dccc 406c924 4f1f0a7 6f29ffd 805bbbe 677dccc 805bbbe 4f1f0a7 677dccc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- chest X-ray report generation
- radiology report generation
- image captioning
- chest X-ray
- X-ray
- radiology
- cxrmate
- cxrmate-ed
- report
- radiology report
- multimodal
- patient data
- patient records
- mimic-cxr
- mimic-iv-ed
---
# **CXRMate-ED**: The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It
This is the model and data pipeline for the CXRMate-ED model from: https://arxiv.org/pdf/2406.13181.
The abstract from the paper:
"This study investigates the integration of diverse patient data sources into multimodal language models for automated chest X-ray (CXR) report generation. Traditionally, CXR report generation relies solely on CXR images and limited radiology data, overlooking valuable information from patient health records, particularly from emergency departments. Utilising the MIMIC-CXR and MIMIC-IV-ED datasets, we incorporate detailed patient information such as vital signs, medicines, and clinical history to enhance diagnostic accuracy. We introduce a novel approach to transform these heterogeneous data sources into embeddings that prompt a multimodal language model; this significantly enhances the diagnostic accuracy of generated radiology reports. Our comprehensive evaluation demonstrates the benefits of using a broader set of patient data, underscoring the potential for enhanced diagnostic capabilities and better patient outcomes through the integration of multimodal data in CXR report generation."
### Prepare the dataset:
```python
import transformers
# Paths:
physionet_dir = '/.../physionet.org/files' # Where MIMIC-CXR, MIMIC-CXR-JPG, and MIMIC-IV-ED are stored.
database_dir = '/.../database/cxrmate_ed' # The Hugging Face dataset will be saved here.
# Prepare the Hugging Face MIMIC-CXR & MIMIC-IV-ED dataset:
model = transformers.AutoModel.from_pretrained('aehrc/cxrmate-ed', trust_remote_code=True)
model.prepare_data(physionet_dir=physionet_dir, database_dir=database_dir)
```
## Generate a report
```python
import torch
import transformers
# Device and paths:
device = 'cuda'
# Download model checkpoint:
model = transformers.AutoModelForCausalLM.from_pretrained('aehrc/cxrmate-ed', trust_remote_code=True).to(device=device)
tokenizer = transformers.PreTrainedTokenizerFast.from_pretrained('aehrc/cxrmate-ed')
# Get the Hugging Face MIMIC-CXR & MIMIC-IV-ED test set:
test_set = model.get_dataset(database_dir=database_dir, test_set_only=True)
# Get an example, add mini-batch dimension and move to device:
example = test_set[0]
example = {k: v.to(device).unsqueeze(0) if isinstance(v, torch.Tensor) else [v] for k, v in example.items()} # Add mini-batch dimension and move to device.
# Convert the patient data in the batch into embeddings:
inputs_embeds, attention_mask, token_type_ids, position_ids, bos_token_ids = model.prepare_inputs(tokenizer=tokenizer, **example)
# Generate reports:
output_ids = model.generate(
input_ids=bos_token_ids,
decoder_inputs_embeds=inputs_embeds,
decoder_token_type_ids=token_type_ids,
prompt_attention_mask=attention_mask,
prompt_position_ids=position_ids,
special_token_ids=[tokenizer.sep_token_id],
max_length=256,
num_beams=4,
return_dict_in_generate=True,
)['sequences']
# Findings and impression section:
findings, impression = model.split_and_decode_sections(output_ids, [tokenizer.sep_token_id, tokenizer.eos_token_id], tokenizer)
for i,j in zip(findings, impression):
print(f'Findings:\t{i}\nImpression:\t{j}\n\n')
```
## MIMIC-CXR & MIMIC-IV-ED Dataset:
MIMIC-CXR, MIMIC-CXR-JPG, and MIMIC-IV-ED must be in the same Physio Net directory. E.g.:
```shell
user@cluster:~$ ls /home/user/physionet.org/files
mimic-cxr mimic-cxr-jpg mimic-iv-ed
```
### Download MIMIC-CXR-JPG:
Download the MIMIC-CXR-JPG dataset from https://physionet.org/content/mimic-cxr-jpg, e.g.,
```shell
wget -r -N -c -np --user <username> --ask-password https://physionet.org/files/mimic-cxr-jpg/2.1.0/
```
Note that you must be a credentialised user to access this dataset.
### Download the reports from MIMIC-CXR:
MIMIC-CXR-JPG does not include the radiology reports and are instead included with MIMIC-CXR (the DICOM version of the dataset). To download this dataset and avoid downloading the DICOM files (which are very large), use `--reject dcm` with the wget command from https://physionet.org/content/mimic-cxr, e.g,
```shell
wget -r -N -c -np --reject dcm --user <username> --ask-password https://physionet.org/files/mimic-cxr/2.0.0/
```
Note that you must be a credentialised user to access this dataset.
### Download MIMIC-IV-ED:
Download the MIMIC-IV-ED dataset from https://physionet.org/content/mimic-iv-ed, e.g.,
```shell
wget -r -N -c -np --user <username> --ask-password https://physionet.org/files/mimic-iv-ed/2.2/
```
Note that you must be a credentialised user to access this dataset.
# Environment requirements
Environment requirements can be found here: https://github.com/aehrc/cxrmate-ed/blob/main/requirements.txt.
# Code repository
The code repository, which includes the training pipeline for CXRMate-ED, is available at: https://github.com/aehrc/cxrmate-ed. |