import torch def compute_time_delta(event_time, reference_time, time_delta_map, denominator = 3600, to_tensor=True): """ How to we transform time delta inputs? It appears that minutes are used as the input to a weight matrix in "Self-Supervised Transformer for Sparse and Irregularly Sampled Multivariate Clinical Time-Series". This is almost confirmed by the CVE class defined here: https://github.com/sindhura97/STraTS/blob/main/strats_notebook.ipynb, where the input has a size of one. """ time_delta = reference_time - event_time time_delta = time_delta.total_seconds() / (denominator) assert isinstance(time_delta, float), f'time_delta should be float, not {type(time_delta)}.' if time_delta < 0: raise ValueError(f'time_delta should be greater than or equal to zero, not {time_delta}.') time_delta = time_delta_map(time_delta) if to_tensor: time_delta = torch.tensor(time_delta) return time_delta