from collections import OrderedDict from functools import partial from math import isqrt from typing import Optional, Tuple, Union import torch import torch.nn as nn from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from transformers.modeling_outputs import ModelOutput from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from .configuration_uniformer import UniFormerWithProjectionHeadConfig logger = logging.get_logger(__name__) layer_scale = False init_value = 1e-6 class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CMlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class CBlock(nn.Module): def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, layer_scale=False, init_value=1e-6): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = nn.BatchNorm2d(dim) self.conv1 = nn.Conv2d(dim, dim, 1) self.conv2 = nn.Conv2d(dim, dim, 1) self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.BatchNorm2d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.ls = layer_scale if self.ls: self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) def forward(self, x): x = x + self.pos_embed(x) x = x + self.module_1(x) x = x + self.module_2(x) return x def module_1(self, x): x = self.norm1(x.to(dtype=self.norm1.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d. x = self.conv1(x) x = self.attn(x) x = self.conv2(x) x = self.drop_path(self.gamma_1 * x) if self.ls else self.drop_path(x) return x def module_2(self, x): x = self.norm2(x.to(dtype=self.norm2.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d. x = self.mlp(x) x = self.drop_path(self.gamma_2 * x) if self.ls else self.drop_path(x) return x class SABlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, layer_scale=False, init_value=1e-6): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.ls = layer_scale if self.ls: self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) def forward(self, x): x = x + self.pos_embed(x) B, N, H, W = x.shape x = x.flatten(2).transpose(1, 2) if self.ls: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.transpose(1, 2).reshape(B, N, H, W) return x class HeadEmbedding(nn.Module): def __init__(self, in_channels, out_channels): super(HeadEmbedding, self).__init__() self.proj = nn.Sequential( nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), nn.BatchNorm2d(out_channels // 2), nn.GELU(), nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), nn.BatchNorm2d(out_channels), ) def forward(self, x): x = self.proj(x) return x class MiddleEmbedding(nn.Module): def __init__(self, in_channels, out_channels): super(MiddleEmbedding, self).__init__() self.proj = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), nn.BatchNorm2d(out_channels), ) def forward(self, x): x = self.proj(x) return x class PatchEmbed(nn.Module): def __init__(self, image_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() image_size = to_2tuple(image_size) patch_size = to_2tuple(patch_size) num_patches_height = image_size[0] // patch_size[0] num_patches_width = image_size[1] // patch_size[1] num_patches = num_patches_height * num_patches_width self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): _, _, H, W = x.shape assert H == self.image_size[0] and W == self.image_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." x = self.proj(x) B, _, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() return x class UniFormer(nn.Module): def __init__(self, depth=[3, 4, 8, 3], image_size=224, in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, patch_size=[4, 2, 2, 2], drop_rate=0., attn_drop_rate=0., drop_path_rate=0., conv_stem=False, layer_norm_eps=1e-6, layer_scale=False, init_value=1e-6, **kwargs): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = partial(nn.LayerNorm, eps=layer_norm_eps) if conv_stem: self.patch_embed1 = HeadEmbedding(in_channels=in_chans, out_channels=embed_dim[0]) self.patch_embed2 = MiddleEmbedding(in_channels=embed_dim[0], out_channels=embed_dim[1]) self.patch_embed3 = MiddleEmbedding(in_channels=embed_dim[1], out_channels=embed_dim[2]) self.patch_embed4 = MiddleEmbedding(in_channels=embed_dim[2], out_channels=embed_dim[3]) else: self.patch_embed1 = PatchEmbed( image_size=image_size, patch_size=patch_size[0], in_chans=in_chans, embed_dim=embed_dim[0]) self.patch_embed2 = PatchEmbed( image_size=image_size // patch_size[0], patch_size=patch_size[1], in_chans=embed_dim[0], embed_dim=embed_dim[1]) self.patch_embed3 = PatchEmbed( image_size=image_size // (patch_size[0]*patch_size[1]), patch_size=patch_size[2], in_chans=embed_dim[1], embed_dim=embed_dim[2]) self.patch_embed4 = PatchEmbed( image_size=image_size // (patch_size[0]*patch_size[1]*patch_size[2]), patch_size=patch_size[3], in_chans=embed_dim[2], embed_dim=embed_dim[3]) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule num_heads = [dim // head_dim for dim in embed_dim] self.blocks1 = nn.ModuleList([ CBlock(dim=embed_dim[0], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i], layer_scale=layer_scale, init_value=init_value) for i in range(depth[0])]) self.blocks2 = nn.ModuleList([ CBlock(dim=embed_dim[1], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i+depth[0]], layer_scale=layer_scale, init_value=init_value) for i in range(depth[1])]) self.blocks3 = nn.ModuleList([ SABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer, layer_scale=layer_scale, init_value=init_value) for i in range(depth[2])]) self.blocks4 = nn.ModuleList([ SABlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer, layer_scale=layer_scale, init_value=init_value) for i in range(depth[3])]) self.norm = nn.BatchNorm2d(embed_dim[-1]) # Representation layer if representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() def forward_features(self, x): x = self.patch_embed1(x) x = self.pos_drop(x) for blk in self.blocks1: x = blk(x) x = self.patch_embed2(x) for blk in self.blocks2: x = blk(x) x = self.patch_embed3(x) for blk in self.blocks3: x = blk(x) x = self.patch_embed4(x) for blk in self.blocks4: x = blk(x) x = self.norm(x.to(dtype=self.norm.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d. x = self.pre_logits(x) return x def forward(self, x): x = self.forward_features(x) return x class UniFormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = UniFormerWithProjectionHeadConfig main_input_name = "pixel_values" def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) class UniFormerProjectionHead(torch.nn.Module): def __init__(self, config) -> None: super().__init__() # Layer normalisation before projection: self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps) # No bias as following layer normalisation with bias: self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.layer_norm(x) x = self.projection(x) return x class UniFormerModel(UniFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.uniformer = UniFormer(**vars(config)) # Initialize weights and apply final processing: self.post_init() def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ModelOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict last_hidden_state = self.uniformer(pixel_values) # Flatten h x w: last_hidden_state = torch.flatten(last_hidden_state, 2) # Permute last hidden state: last_hidden_state = torch.permute(last_hidden_state, [0, 2, 1]) # return last_hidden_state if not return_dict: return last_hidden_state return ModelOutput(last_hidden_state=last_hidden_state) class MultiUniFormerWithProjectionHead(UniFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.uniformer = UniFormer(**vars(config)) self.projection_head = UniFormerProjectionHead(config) # Initialize weights and apply final processing: self.post_init() def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ModelOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Flatten the batch and study_id dimensions: assert len(pixel_values.shape) == 5, 'pixel_values must be B, S, C, H, W, where S is the max number of images for a study in the batch.' last_hidden_state = self.uniformer(pixel_values.view(-1, *pixel_values.shape[2:])) # last_hidden_state = self.uniformer(pixel_values.flatten(start_dim=0, end_dim=1)) # Flatten h x w: last_hidden_state = torch.flatten(last_hidden_state, 2) # Project the features for each spatial position to the decoder's hidden size: projection = self.projection_head(torch.permute(last_hidden_state, [0, 2, 1])) # Concatenate the features for each chest X-ray: projection = projection.view(pixel_values.shape[0], -1, projection.shape[-1]) # Derive the attention mask from the pixel values: mask = (pixel_values[:, :, 0, 0, 0] != 0.0)[:, :, None] attention_mask = torch.ones( [projection.shape[0], pixel_values.shape[1], projection.shape[1] // pixel_values.shape[1]], dtype=torch.long, device=mask.device, ) attention_mask = attention_mask * mask attention_mask = attention_mask.view(attention_mask.shape[0], -1) if not return_dict: return projection return ModelOutput(last_hidden_state=projection, attention_mask=attention_mask) if __name__ == '__main__': y = PatchEmbed() y(torch.randn(2, 3, 224, 224))