File size: 5,154 Bytes
9b576a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
base_model: BEE-spoke-data/TinyLlama-3T-1.1bee
datasets:
- BEE-spoke-data/bees-internal
inference: false
language:
- en
license: apache-2.0
metrics:
- accuracy
model_creator: BEE-spoke-data
model_name: TinyLlama-3T-1.1bee
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- bees
- bzz
- honey
- oprah winfrey
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
widget:
- example_title: Queen Excluder
  text: In beekeeping, the term "queen excluder" refers to
- example_title: Increasing Honey Production
  text: One way to encourage a honey bee colony to produce more honey is by
- example_title: Lifecycle of a Worker Bee
  text: The lifecycle of a worker bee consists of several stages, starting with
- example_title: Varroa Destructor
  text: Varroa destructor is a type of mite that
- example_title: Beekeeping PPE
  text: In the world of beekeeping, the acronym PPE stands for
- example_title: Robbing in Beekeeping
  text: The term "robbing" in beekeeping refers to the act of
- example_title: Role of Drone Bees
  text: 'Question: What''s the primary function of drone bees in a hive?

    Answer:'
- example_title: Honey Harvesting Device
  text: To harvest honey from a hive, beekeepers often use a device known as a
- example_title: Beekeeping Math Problem
  text: 'Problem: You have a hive that produces 60 pounds of honey per year. You decide
    to split the hive into two. Assuming each hive now produces at a 70% rate compared
    to before, how much honey will you get from both hives next year?

    To calculate'
- example_title: Swarming
  text: In beekeeping, "swarming" is the process where
---
# BEE-spoke-data/TinyLlama-3T-1.1bee-GGUF

Quantized GGUF model files for [TinyLlama-3T-1.1bee](https://huggingface.co/BEE-spoke-data/TinyLlama-3T-1.1bee) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [tinyllama-3t-1.1bee.fp16.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.fp16.gguf) | fp16 | 2.20 GB  |
| [tinyllama-3t-1.1bee.q2_k.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q2_k.gguf) | q2_k | 432.13 MB  |
| [tinyllama-3t-1.1bee.q3_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q3_k_m.gguf) | q3_k_m | 548.40 MB  |
| [tinyllama-3t-1.1bee.q4_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q4_k_m.gguf) | q4_k_m | 667.81 MB  |
| [tinyllama-3t-1.1bee.q5_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q5_k_m.gguf) | q5_k_m | 782.04 MB  |
| [tinyllama-3t-1.1bee.q6_k.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q6_k.gguf) | q6_k | 903.41 MB  |
| [tinyllama-3t-1.1bee.q8_0.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q8_0.gguf) | q8_0 | 1.17 GB  |



## Original Model Card:
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# TinyLlama-3T-1.1bee


![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/I6AfPId0Xo_vVobtkAP12.png)

A grand successor to [the original](https://huggingface.co/BEE-spoke-data/TinyLlama-1.1bee). This one has the following improvements:

- start from [finished 3T TinyLlama](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
- vastly improved and expanded SoTA beekeeping dataset


## Model description

This model is a fine-tuned version of TinyLlama-1.1b-3T on the BEE-spoke-data/bees-internal dataset.

It achieves the following results on the evaluation set:
- Loss: 2.1640
- Accuracy: 0.5406

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 13707
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.4432        | 0.19  | 50   | 2.3850          | 0.5033   |
| 2.3655        | 0.39  | 100  | 2.3124          | 0.5129   |
| 2.374         | 0.58  | 150  | 2.2588          | 0.5215   |
| 2.3558        | 0.78  | 200  | 2.2132          | 0.5291   |
| 2.2677        | 0.97  | 250  | 2.1828          | 0.5348   |
| 2.0701        | 1.17  | 300  | 2.1788          | 0.5373   |
| 2.0766        | 1.36  | 350  | 2.1673          | 0.5398   |
| 2.0669        | 1.56  | 400  | 2.1651          | 0.5402   |
| 2.0314        | 1.75  | 450  | 2.1641          | 0.5406   |
| 2.0281        | 1.95  | 500  | 2.1639          | 0.5407   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0
- Datasets 2.16.1
- Tokenizers 0.15.0