update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-base-POSITIVE_NEGATIVE_ONLY_BALANCED_CLASSES
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-base-POSITIVE_NEGATIVE_ONLY_BALANCED_CLASSES
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3710
|
20 |
+
- Accuracy: 0.8822
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 3e-05
|
40 |
+
- train_batch_size: 64
|
41 |
+
- eval_batch_size: 64
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 256
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 0.7822 | 0.96 | 18 | 0.6874 | 0.7424 |
|
55 |
+
| 0.5685 | 1.96 | 36 | 0.5974 | 0.7845 |
|
56 |
+
| 0.45 | 2.96 | 54 | 0.4988 | 0.8182 |
|
57 |
+
| 0.399 | 3.96 | 72 | 0.4583 | 0.8384 |
|
58 |
+
| 0.3457 | 4.96 | 90 | 0.4415 | 0.8451 |
|
59 |
+
| 0.352 | 5.96 | 108 | 0.3710 | 0.8822 |
|
60 |
+
| 0.2878 | 6.96 | 126 | 0.3881 | 0.8620 |
|
61 |
+
| 0.2669 | 7.96 | 144 | 0.4309 | 0.8502 |
|
62 |
+
| 0.2406 | 8.96 | 162 | 0.4271 | 0.8502 |
|
63 |
+
| 0.2491 | 9.96 | 180 | 0.4271 | 0.8502 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.11.3
|
69 |
+
- Pytorch 1.11.0
|
70 |
+
- Datasets 1.14.0
|
71 |
+
- Tokenizers 0.10.3
|