ahmedesmail16's picture
Update README.md
c587a72 verified
|
raw
history blame
3.79 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224-pt22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Psoriasis-500-100aug-224-beit-large
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7991266375545851

Psoriasis-500-100aug-224-beit-large

This model is a fine-tuned version of microsoft/beit-large-patch16-224-pt22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1823
  • Accuracy: 0.7991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8236 0.9973 92 1.1536 0.6358
0.4282 1.9946 184 0.8848 0.7389
0.2305 2.9919 276 0.9811 0.7258
0.1206 4.0 369 0.8858 0.7808
0.1107 4.9973 461 1.1129 0.7397
0.0319 5.9946 553 1.1625 0.7703
0.0073 6.9919 645 1.1938 0.7895
0.0078 8.0 738 1.3031 0.7790
0.0013 8.9973 830 1.2117 0.7974
0.002 9.9729 920 1.1823 0.7991

Classification Report

Class Precision (%) Recall (%) F1-Score (%) Support
Abnormal 66 62 64 108
Erythrodermic 96 76 85 100
Guttate 95 83 89 114
Inverse 83 91 87 108
Nail 81 84 83 99
Normal 81 79 80 82
Not Define 98 95 96 92
Palm Soles 82 88 85 102
Plaque 70 88 78 84
Psoriatic Arthritis 78 74 76 104
Pustular 71 76 74 112
Scalp 84 86 85 80
Accuracy 82 1185
Macro Avg 82 82 82 1185
Weighted Avg 82 82 82 1185

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1