|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Jamba model configuration""" |
|
import math |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class JambaConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a |
|
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Jamba-v0.1 model. |
|
|
|
[ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 65536): |
|
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`JambaModel`] |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the |
|
model has a output word embedding layer. |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1): |
|
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an |
|
integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the |
|
logits of the last prompt token are needed for generation. For long sequences, the logits for the entire |
|
sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint |
|
significantly. |
|
output_router_logits (`bool`, *optional*, defaults to `False`): |
|
Whether or not the router logits should be returned by the model. Enabling this will also |
|
allow the model to output the auxiliary loss. See [here]() for more details |
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): |
|
The aux loss factor for the total loss. |
|
pad_token_id (`int`, *optional*, defaults to 0): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
sliding_window (`int`, *optional*): |
|
Sliding window attention window size. If not specified, will default to `None`. |
|
max_position_embeddings (`int`, *optional*, defaults to 262144): |
|
This value doesn't have any real effect. The maximum sequence length that this model is intended to be |
|
used with. It can be used with longer sequences, but performance may degrade. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
num_experts_per_tok (`int`, *optional*, defaults to 2): |
|
The number of experts to root per-token, can be also interpreted as the `top-p` routing |
|
parameter |
|
num_experts (`int`, *optional*, defaults to 16): |
|
Number of experts per Sparse MLP layer. |
|
expert_layer_period (`int`, *optional*, defaults to 2): |
|
Once in this many layers, we will have an expert layer |
|
expert_layer_offset (`int`, *optional*, defaults to 1): |
|
The first layer index that contains an expert mlp layer |
|
attn_layer_period (`int`, *optional*, defaults to 8): |
|
Once in this many layers, we will have a vanilla attention layer |
|
attn_layer_offset (`int`, *optional*, defaults to 4): |
|
The first layer index that contains a vanilla attention mlp layer |
|
use_mamba_kernels (`bool`, *optional*, defaults to `True`): |
|
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and |
|
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if |
|
`True` and kernels are not available |
|
mamba_d_state (`int`, *optional*, defaults to 16): |
|
The dimension the mamba state space latents |
|
mamba_d_conv (`int`, *optional*, defaults to 4): |
|
The size of the mamba convolution kernel |
|
mamba_expand (`int`, *optional*, defaults to 2): |
|
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size |
|
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): |
|
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` |
|
mamba_conv_bias (`bool`, *optional*, defaults to `True`): |
|
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block. |
|
mamba_proj_bias (`bool`, *optional*, defaults to `False`): |
|
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block |
|
|
|
""" |
|
|
|
model_type = "jamba" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=65536, |
|
tie_word_embeddings=False, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
num_logits_to_keep=1, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.001, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
sliding_window=None, |
|
max_position_embeddings=262144, |
|
attention_dropout=0.0, |
|
num_experts_per_tok=2, |
|
num_experts=16, |
|
expert_layer_period=2, |
|
expert_layer_offset=1, |
|
attn_layer_period=8, |
|
attn_layer_offset=4, |
|
use_mamba_kernels=True, |
|
mamba_d_state=16, |
|
mamba_d_conv=4, |
|
mamba_expand=2, |
|
mamba_dt_rank="auto", |
|
mamba_conv_bias=True, |
|
mamba_proj_bias=False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
self.max_position_embeddings = max_position_embeddings |
|
self.attention_dropout = attention_dropout |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
|
|
self.use_cache = use_cache |
|
self.num_logits_to_keep = num_logits_to_keep |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
|
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_experts = num_experts |
|
self.expert_layer_period = expert_layer_period |
|
self.expert_layer_offset = expert_layer_offset |
|
self.attn_layer_period = attn_layer_period |
|
self.attn_layer_offset = attn_layer_offset |
|
|
|
self.use_mamba_kernels = use_mamba_kernels |
|
self.mamba_d_state = mamba_d_state |
|
self.mamba_d_conv = mamba_d_conv |
|
self.mamba_expand = mamba_expand |
|
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank |
|
self.mamba_conv_bias = mamba_conv_bias |
|
self.mamba_proj_bias = mamba_proj_bias |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def layers_block_type(self): |
|
return [ |
|
"attention" if i % self.attn_layer_period == self.attn_layer_offset else "mamba" |
|
for i in range(self.num_hidden_layers) |
|
] |
|
|
|
@property |
|
def layers_num_experts(self): |
|
return [ |
|
self.num_experts if i % self.expert_layer_period == self.expert_layer_offset else 1 |
|
for i in range(self.num_hidden_layers) |
|
] |
|
|