aimarsg commited on
Commit
63d4826
1 Parent(s): 68d04dc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -2
README.md CHANGED
@@ -4,9 +4,36 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - conll2003
 
 
 
 
 
7
  model-index:
8
  - name: bert-finetuned-ner
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -15,6 +42,12 @@ should probably proofread and complete it, then remove this comment. -->
15
  # bert-finetuned-ner
16
 
17
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
 
 
 
 
 
 
18
 
19
  ## Model description
20
 
@@ -41,9 +74,18 @@ The following hyperparameters were used during training:
41
  - lr_scheduler_type: linear
42
  - num_epochs: 3
43
 
 
 
 
 
 
 
 
 
 
44
  ### Framework versions
45
 
46
  - Transformers 4.25.1
47
- - Pytorch 1.13.0+cu116
48
  - Datasets 2.8.0
49
  - Tokenizers 0.13.2
 
4
  - generated_from_trainer
5
  datasets:
6
  - conll2003
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
  model-index:
13
  - name: bert-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ config: conll2003
22
+ split: train
23
+ args: conll2003
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9338296112489661
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9500168293503871
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9418536748143823
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9861364572908695
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
  # bert-finetuned-ner
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0587
47
+ - Precision: 0.9338
48
+ - Recall: 0.9500
49
+ - F1: 0.9419
50
+ - Accuracy: 0.9861
51
 
52
  ## Model description
53
 
 
74
  - lr_scheduler_type: linear
75
  - num_epochs: 3
76
 
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0889 | 1.0 | 1756 | 0.0711 | 0.9132 | 0.9297 | 0.9214 | 0.9809 |
82
+ | 0.0338 | 2.0 | 3512 | 0.0597 | 0.9315 | 0.9475 | 0.9394 | 0.9860 |
83
+ | 0.0184 | 3.0 | 5268 | 0.0587 | 0.9338 | 0.9500 | 0.9419 | 0.9861 |
84
+
85
+
86
  ### Framework versions
87
 
88
  - Transformers 4.25.1
89
+ - Pytorch 1.13.1+cu116
90
  - Datasets 2.8.0
91
  - Tokenizers 0.13.2