update model card README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
-
-
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
@@ -16,24 +15,24 @@ model-index:
|
|
16 |
name: Token Classification
|
17 |
type: token-classification
|
18 |
dataset:
|
19 |
-
name:
|
20 |
-
type:
|
21 |
-
config:
|
22 |
split: train
|
23 |
-
args:
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,13 +40,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
# bert-finetuned-ner
|
43 |
|
44 |
-
This model
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,9 +77,9 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
5 |
+
- wikiann
|
6 |
metrics:
|
7 |
- precision
|
8 |
- recall
|
|
|
15 |
name: Token Classification
|
16 |
type: token-classification
|
17 |
dataset:
|
18 |
+
name: wikiann
|
19 |
+
type: wikiann
|
20 |
+
config: es
|
21 |
split: train
|
22 |
+
args: es
|
23 |
metrics:
|
24 |
- name: Precision
|
25 |
type: precision
|
26 |
+
value: 0.8655875585178132
|
27 |
- name: Recall
|
28 |
type: recall
|
29 |
+
value: 0.889079054604727
|
30 |
- name: F1
|
31 |
type: f1
|
32 |
+
value: 0.8771760543561292
|
33 |
- name: Accuracy
|
34 |
type: accuracy
|
35 |
+
value: 0.9432045651459472
|
36 |
---
|
37 |
|
38 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
# bert-finetuned-ner
|
42 |
|
43 |
+
This model was trained from scratch on the wikiann dataset.
|
44 |
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.2685
|
46 |
+
- Precision: 0.8656
|
47 |
+
- Recall: 0.8891
|
48 |
+
- F1: 0.8772
|
49 |
+
- Accuracy: 0.9432
|
50 |
|
51 |
## Model description
|
52 |
|
|
|
77 |
|
78 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| 0.245 | 1.0 | 2500 | 0.2470 | 0.8224 | 0.8577 | 0.8397 | 0.9303 |
|
81 |
+
| 0.1472 | 2.0 | 5000 | 0.2469 | 0.8651 | 0.8876 | 0.8762 | 0.9415 |
|
82 |
+
| 0.0965 | 3.0 | 7500 | 0.2685 | 0.8656 | 0.8891 | 0.8772 | 0.9432 |
|
83 |
|
84 |
|
85 |
### Framework versions
|