update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: prueba3
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# prueba3
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2158
|
23 |
+
- Precision: 0.7162
|
24 |
+
- Recall: 0.6335
|
25 |
+
- F1: 0.6723
|
26 |
+
- Accuracy: 0.9737
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2.75e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 30
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 29 | 0.2562 | 0.7732 | 0.5976 | 0.6742 | 0.9719 |
|
58 |
+
| No log | 2.0 | 58 | 0.2526 | 0.705 | 0.5618 | 0.6253 | 0.9704 |
|
59 |
+
| No log | 3.0 | 87 | 0.2187 | 0.6833 | 0.6534 | 0.6680 | 0.9705 |
|
60 |
+
| No log | 4.0 | 116 | 0.2205 | 0.6583 | 0.6295 | 0.6436 | 0.9715 |
|
61 |
+
| No log | 5.0 | 145 | 0.2161 | 0.7162 | 0.6534 | 0.6833 | 0.9712 |
|
62 |
+
| No log | 6.0 | 174 | 0.2293 | 0.6977 | 0.5976 | 0.6438 | 0.9722 |
|
63 |
+
| No log | 7.0 | 203 | 0.2207 | 0.6972 | 0.6056 | 0.6482 | 0.9724 |
|
64 |
+
| No log | 8.0 | 232 | 0.2343 | 0.6781 | 0.6295 | 0.6529 | 0.9707 |
|
65 |
+
| No log | 9.0 | 261 | 0.2212 | 0.7115 | 0.5896 | 0.6449 | 0.9730 |
|
66 |
+
| No log | 10.0 | 290 | 0.2171 | 0.7260 | 0.6016 | 0.6580 | 0.9734 |
|
67 |
+
| No log | 11.0 | 319 | 0.2191 | 0.6851 | 0.6414 | 0.6626 | 0.9725 |
|
68 |
+
| No log | 12.0 | 348 | 0.2101 | 0.7056 | 0.6494 | 0.6763 | 0.9740 |
|
69 |
+
| No log | 13.0 | 377 | 0.2227 | 0.7240 | 0.6375 | 0.6780 | 0.9732 |
|
70 |
+
| No log | 14.0 | 406 | 0.2226 | 0.7442 | 0.6375 | 0.6867 | 0.9739 |
|
71 |
+
| No log | 15.0 | 435 | 0.2247 | 0.7339 | 0.6375 | 0.6823 | 0.9739 |
|
72 |
+
| No log | 16.0 | 464 | 0.2167 | 0.6983 | 0.6454 | 0.6708 | 0.9729 |
|
73 |
+
| No log | 17.0 | 493 | 0.2220 | 0.7281 | 0.6295 | 0.6752 | 0.9732 |
|
74 |
+
| 0.0005 | 18.0 | 522 | 0.2294 | 0.7299 | 0.6135 | 0.6667 | 0.9725 |
|
75 |
+
| 0.0005 | 19.0 | 551 | 0.2104 | 0.6949 | 0.6534 | 0.6735 | 0.9722 |
|
76 |
+
| 0.0005 | 20.0 | 580 | 0.2103 | 0.7240 | 0.6375 | 0.6780 | 0.9730 |
|
77 |
+
| 0.0005 | 21.0 | 609 | 0.2092 | 0.7137 | 0.6454 | 0.6778 | 0.9735 |
|
78 |
+
| 0.0005 | 22.0 | 638 | 0.2091 | 0.7181 | 0.6494 | 0.6820 | 0.9737 |
|
79 |
+
| 0.0005 | 23.0 | 667 | 0.2081 | 0.7162 | 0.6534 | 0.6833 | 0.9735 |
|
80 |
+
| 0.0005 | 24.0 | 696 | 0.2198 | 0.7264 | 0.6135 | 0.6652 | 0.9722 |
|
81 |
+
| 0.0005 | 25.0 | 725 | 0.2206 | 0.7290 | 0.6215 | 0.6710 | 0.9725 |
|
82 |
+
| 0.0005 | 26.0 | 754 | 0.2194 | 0.7256 | 0.6215 | 0.6695 | 0.9735 |
|
83 |
+
| 0.0005 | 27.0 | 783 | 0.2220 | 0.7290 | 0.6215 | 0.6710 | 0.9739 |
|
84 |
+
| 0.0005 | 28.0 | 812 | 0.2230 | 0.7290 | 0.6215 | 0.6710 | 0.9735 |
|
85 |
+
| 0.0005 | 29.0 | 841 | 0.2163 | 0.7182 | 0.6295 | 0.6709 | 0.9737 |
|
86 |
+
| 0.0005 | 30.0 | 870 | 0.2158 | 0.7162 | 0.6335 | 0.6723 | 0.9737 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.27.3
|
92 |
+
- Pytorch 1.13.1+cu116
|
93 |
+
- Datasets 2.10.1
|
94 |
+
- Tokenizers 0.13.2
|